Präparation, funktionelle und strukturelle Charakterisierung von Oxidationskatalysatoren zur Nachbehandlung von Abgasen dieselmotorbetriebener Fahrzeuge

Einfluß von Präparationsverfahren und Edelmetallprekursor beim System Platin/γ-Aluminiumoxid

Vom Fachbereich Materialwissenschaft der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigte Dissertation
eingereicht von Dipl.-Ing. Dietmar Schmitt aus Bensheim

Referent: Prof. Dr.-Ing. H. Fueß
Koreferent: Prof. Dr.-Ing. H. Vogel
Tag der Einreichung: 26.07.1999
Tag der mündlichen Prüfung: 23.08.1999

Darmstadt 1999
D17
Danksagung

Mein ganz besonderer Dank gilt Hrn. Prof. Dr.-Ing. H. Fueß für die Bereitschaft dieses Thema zu unterstützen, das Interesse am Fortgang der Arbeit und die Bereitstellung der instrumentellen Analytik.


Hrn Prof. Dr. M. Martin des Fachbereichs Chemie der Technischen Universität Darmstadt danke ich für die Bereitstellung des in situ Ofens für die XANES-Messungen.

Für die Starthilfe im Fachgebiet Strukturforschung, sowie die zahlreichen Diskussionen, die nicht immer im Institut endeten und für die moralische Unterstützung danke ich ganz besonders Dr.–Ing. Rainer Hochschild und Dr.–Ing. Markus Dinges.

Für die Unterstützung während der beiden EXAFS-Meßzeiten in Hamburg sowie für die zahlreichen Diskussionen möchte ich mich ganz besonders bei Matthias Feger und Ingo Lappas bedanken.

Die hervorragende Zusammenarbeit und Arbeitsatmosphäre mit meinen ehemaligen Promotions-Kollegen bei der Degussa-Hüls AG, Dr.-Ing. T. Ried und Dr.-Ing. S. Eckhoff werde ich nie vergessen.

Bei Thorsten Buhrmester, Dr. L. Tröger und insbesondere bei Dr. M. Tischer bedanke ich mich für die Einweisung am Meßstand X1. Folgenden Mitarbeitern des Arbeitskreises danke ich für die Unterstützung von technischer und fachlicher Seite: Ingrid Svoboda, Sabine Foro, Dr. Veronique Buschmann, Hrn. Dr. G. Miehe, Heinz Mohren, Jean-Christophe.

Inhaltsverzeichnis

1 Einleitung und Aufgabenstellung ............................................................. 1

2 Experimentelle Methoden ......................................................................... 8

2.1 Aktivitätsmessungen .......................................................................................... 8

2.2 Sorptionsmethoden ............................................................................................... 10

2.3 Thermoanalyse ....................................................................................................... 12

2.4 Elektronenmikroskopie ......................................................................................... 12

2.5 Röntgenbeugung ..................................................................................................... 13

2.6 Betrachtungen zur Partikelgrößenbestimmung ..................................................... 17

2.7 Röntgenabsorption ................................................................................................. 17

2.7.1 Grundlagen zur kantenfernen Feinstruktur (EXAFS) ................................................ 17

2.7.2 Grundlagen zur Nahkantenstruktur (XANES) ...................................................... 20

2.7.3 Experimentelle Durchführung der Röntgenabsorptionsmessungen ....................... 21

2.7.4 Datenaufarbeitung und Auswertung der EXAFS .................................................. 25

2.7.5 Quantitative Auswertung der XANES ................................................................. 30

3 Präparation der Katalysatoren................................................................ 35

3.1 Verfahren zur Katalysatorherstellung.................................................................... 35

3.2 Monolithbeschichtung ........................................................................................... 36

3.3 Thermische Behandlung der Katalysatoren.......................................................... 38

4 Charakterisierung der Trägeroxide und Prekursoren .......................... 40

4.1 Untersuchung der Trägeroxide............................................................................. 40

4.1.1 Spezifische Oberfläche ......................................................................................... 40

4.1.2 Hydroxylgruppendichte ....................................................................................... 42

4.1.3 Wechselwirkung der Platinsalze mit Trägeroxiden als Funktion des pH-Werts .......... 44

4.1.4 Rasterelektronenmikroskopie – Mahlen der Trägeroxide .................................... 47

4.2 Charakterisierung von PTH .................................................................................. 51

4.2.1 Strukturuntersuchungen ....................................................................................... 51

4.2.2 Zersetzung von PTH auf γ-Aluminiumoxid .......................................................... 55
Inhaltsverzeichnis

4.3 Zersetzung von PtR

4.3.1 Thermoanalyse

4.3.2 Untersuchung der Prekursorzersetzung mit Röntgenbeugung

4.3.3 Valenzzustand von Platin: In situ Röntgenabsorption (XANES)

4.3.4 Temperaturaufgelöste Infrarotspektroskopie

4.4 Zersetzung von PtR auf \( \gamma \)-Aluminiumoxid

4.4.1 Thermoanalytische Untersuchungen

4.4.2 Temperaturauflöste Massenspektrometrie

4.4.3 In situ Röntgenabsorption (XANES)

5 Vergleich der Herstellungsmethoden Injektions- und Sprühverfahren

5.1 Quantitative Bestimmung der XANES: Platinvalenz

5.2 Lokale Umgebung von Platin während Trocknung, Kalzinierung und Reduktion

5.3 Bestimmung der Partikelgröße aus EXAFS-Daten: Kern-Schale Modell

5.4 Partikelgröße nach Kalzinierung und Reduktion: TEM und Chemisorption

5.5 Aktivität nach Kalzinierung und Reduktion

5.6 Valenz und lokale Umgebung in Abhängigkeit von der Edelmetallbeladung

5.7 Partikelgröße als Funktion der Edelmetallbeladung

5.8 Einfluß der Edelmetallbeladung auf die Aktivität beim Sprühverfahren

5.9 Modellvorstellung zum Aufbringen des Platinsalzes auf dem Trägeroxid

6 Vergleich der Prekursoren PTH und PtR

6.1 EXAFS-Untersuchung der Platinsalzlösungen

6.2 Oxidationszustand von Platin während Trocknung, Kalzinierung und Reduktion

6.3 Untersuchung der Nahordnung während Trocknung, Kalzinierung und Reduktion

6.4 Aktivitätsmessungen

7 Thermische Alterung der Katalysatoren

7.1 XANES: Übergang vom kalzinierten bzw. reduzierten in den gealterten Zustand

7.2 EXAFS-Experimente zur Alterung von reduzierten Katalysatoren: Vergleich von Injektions- und Sprühverfahren
1 Einleitung und Aufgabenstellung


$$\lambda = \frac{\text{zugeführte Luftmenge}}{\text{theoretisch erforderliche Luftmenge}}$$

(1.1)

Ist die Luftzahl $\lambda < 1$ so liegt ein fettes, ist $\lambda > 1$ handelt es sich um ein mageres Abgasgemisch. Ottomotoren können auch mager betrieben werden, dadurch sind die Kohlendioxid-Emissionen und der Kraftstoffverbrauch geringer. Im Vergleich zum normalen Ottomotor mit geregelmtem Drei-Wege-Katalysatorkonzept weisen Magermotoren einen höheren Stickoxidemissionsanteil auf und überschreiten damit die gültigen Grenzwerte für Ottomotoren. Die auf dem Markt befindlichen Magermotoren arbeiten deshalb auch nicht als reine Magermotoren, sondern als Magermischkonzepte. Während hoher Motorlast oder bei Beschleunigung (Betriebsbereiche mit hoher Stickoxidemission) wird auf den Betrieb mit geregelmtem Drei-Wege-Katalysator umgeschaltet. Der Kraftstoffverbrauch des Magermischkonzeptes liegt bei ca. 5 % unter dem vergleichbarer Motoren mit „$\lambda = 1$-Regelung“. Eine Weiterentwicklung dieser Magermotorkonzepte ist
die Benzindirekteinspritzung sowie ein vorhandener Reduktionskatalysator, zur Umsetzung der Stickoxide. Der Motor arbeitet ähnlich wie ein Dieselmotor und es läßt sich gegenüber der $\lambda = 1$-Technologie ein um ca. 15 bis 20% geringerer Verbrauchswert erreichen. Über die Kombination einer auf den Reduktionskatalysator abgestimmten Motorsteuerung könnten heutige und zukünftige Abgasbestimmungen mit dieser Motortecnologie eingehalten werden. Die Lösung eines solchen Reduktionskatalysators könnte die sogenannte „$\text{NO}_x$-Adsorber-Technologie“ sein [Nakatsuji 98] [Brogan 98].

Hierbei werden die Stickoxide unter mageren Bedingungen zu $\text{NO}_2$ oxidiert und als Nitrat chemisch auf dem Katalysator an ein Substrat gebunden. Während kurzzeitig fetter Zyklen werden dann die Nitrate durch Kohlenwasserstoffe zu Stickstoff reduziert. Zur Zeit stellt bei dieser Technologie die irreversible Vergiftung des Katalysators durch Sulfate ein großes Problem dar. Auf dieser Tatsache basierend und wegen des Beitrags zur Partikelbildung im Abgas sind die Treibstoffhersteller aufgefordert, den Schwefelgehalt auf ein Minimum zu senken (bisher 0,05 Gew.-%). Eine zusätzliche Herausforderung solcher Magermotoren ist die im Vergleich zum herkömmlichen Ottomotor geringere Abgastemperatur; dies führt vor allem in der Kaltstartphase zu hohen CO- und HC-Emissionen.

Bei Dieselmotoren findet wie bei den Magermotoren die Verbrennung bei $\lambda > 1$ statt und es werden die Schadstoffe Kohlenmonoxid und Kohlenwasserstoffe emittiert. Durch sogenannte Oxidationskatalysatoren können diese Komponenten ab einer Temperatur von ca. 150°C effektiv zu Kohlendioxid und Wasser umgesetzt werden, die Stickoxide werden in einem nur sehr begrenzten Temperaturbereich reduziert. Die Abgastemperaturen sind bei diesem Motorkonzept während der Kaltstartphase und im Teillastbetrieb mit zum Teil unter 200°C sehr niedrig und es wird wie bei den Magermotoren eine hohe Anforderung an die Tieftemperaturaktivität des Oxidationskatalysators gestellt. Außerdem werden unter Vollastbetrieb Temperaturen von bis zu 850°C erreicht; der Katalysator muß somit eine hohe Stabilität gegenüber thermischer Alterung besitzen.


Der Gesetzgeber schreibt für neu zugelassene Personenkraftwagen mit Dieselmotoren in den Stufen EURO I bis IV eine Verringerung der Emission von CO, Partikel und HC+NOₓ vor [Zelenka 96]. So gilt die EURO Stufe II für Motoren mit Direkteinspritzung seit 1996 und für Motoren mit indirekter Einspritzung ab 1999. Ab dem Jahr 2000 werden mit Einführung der EURO III Stufe folgende Höchstgrenzen für die Abgasemissionen gelten: HC+NOₓ = 0,56 g km⁻¹, CO = 0,04 g km⁻¹ und Partikel = 0,05 g km⁻¹ [ENVIRONEX 97]. Die Angaben beziehen sich jeweils auf Gramm Emission je gefahrenem Kilometer, gemittelt über den sogenannten europäischen Testzyklus MVEG-A (siehe Abb. 1.1).

Abb. 1.1 MVEG-A Testzyklus für Emissionsmessung von Personenkraftwagen

Dieser Zyklus hat eine Gesamtdauer von 1220 Sekunden und besteht aus vier gleichen Phasen im Bereich 0 bis 800 Sekunden, die eine innerstädtische Fahrt simulieren. Mit dem Hochgeschwindigkeitssteil im Bereich von 800 bis 1220 Sekunden werden die Fahrten auf Landstraße und Autobahn berücksichtigt.
Im Jahr 2005 wird voraussichtlich die EURO IV-Stufe mit einer Halbierung der Grenzwerte die Anforderungen verschärfen. Aus diesem Grunde wird die Entwicklung integrierter Systeme, wie im Falle des 3-Wege-Katalysators, notwendig sein.


- Sintern und Alterung von nanokristallinem Platin
- Variation der Präparationsparameter


Neben diesen Alterungseffekten werden die Katalysatoreigenschaften ganz wesentlich von den Platinprekursoren, der Präparationsmethode und der thermischen Vorbehandlung beeinflußt. [Reyes 96] zeigt mit einem Vergleich von Platin(II)-acetylacetonat und Hexachloroplatin(IV)säure-Hexahydrat, daß der mit dem organischen Prekursor
Die genaue chemische Zusammensetzung von PtR wird aus Gründen der Geheimhaltung nicht beschrieben. Erhöht die Katalysator eine höhere Edelmetalldispersion besitzt. Der Einfluß des Platinprecursors auf die Katalysator-Aktivität wird von [Eckhoff 96] untersucht, der Vergleich von \([\text{Pt(NH}_3\text{)}_4](\text{OH})_2\), \([\text{Pt(NH}_3\text{)}_4](\text{NO}_3)_2\) und \(\text{H}_2[\text{Pt(Cl)}_6]\) zeigt für den hydroxidischen Prekursor die höchste Aktivität. Die Verteilung von Platin in \(\gamma\)-Aluminiumoxid-Pellets kann durch sequentielle Imprägnierung mit \(\text{H}_2[\text{Pt(Cl)}_6]\) gezielt eingestellt werden [Papageorgiou 96]. Es wird anhand der Imprägnierungszeit und der Konzentrationen von \(\text{H}_2[\text{Pt(Cl)}_6]\) und Zitronensäure die Edelmetall-Eindringtiefe und die Edelmetallverteilung im Trägeroxid variiert. Der Einfluß des pH-Werts auf die Eindringtiefe von \(\text{H}_2[\text{Pt(Cl)}_6]\) in \(\gamma\)-Aluminiumoxid-Pellets wird auch von [Heise 85] beschrieben. Zusätzlich besteht eine Abhängigkeit der adsorbierten Menge Platinprekursor vom pH-Wert. Deshalb ist es von besonderem Interesse, den Einfluß von Platinprecursor, Präparationsmethode und thermischer Behandlung auf die Aktivität zu untersuchen und die Eigenschaften von Platin auf dem Trägeroxid während der thermischen Behandlung der Katalysatorherstellung zu beschreiben.

Im Rahmen dieser Arbeit werden Dieseloxidationskatalysatoren anhand der Herstellungsverfahren, der verwendeten Platinsalze und der Edelmetallbeladung vergleichend untersucht. Im Rahmen von Voruntersuchungen sollen zunächst folgende Fragestellungen beantwortet werden:

Adsorbieren die Platinsalze Tetraamminplatin(II)-dihydroxid \([\text{Pt(NH}_3\text{)}_4](\text{OH})_2\) (= PTH), Tetraamminplatin(II)-dinitrat \([\text{Pt(NH}_3\text{)}_4](\text{NO}_3)_2\) (= PTN) und PtR* an unterschiedliche Trägeroxide bei allen pH-Werten gleich?

Wie stabil ist die spezifische Oberfläche von Trägeroxiden gegenüber thermischer Alterung und hat diese Alterung einen Einfluß auf die Hydroxylgruppendichte des Trägeroxids?

Es folgen strukturelle Untersuchungen zum Aufbau der Platinprekursoren, des weiteren wird die thermische Zersetzung der Prekursoren auf dem Trägeroxid und der reinen Salze untersucht.


*Die genaue chemische Zusammensetzung von PtR wird aus Gründen der Geheimhaltung nicht beschrieben.

Der Vergleich der Prekursoren PtR und PTH zeigt den Einfluß des Prekursors auf die strukturellen Eigenschaften und die Aktivität. Analog zum Vergleich der Herstellungsverfahren werden die strukturellen Eigenschaften des Platins während der Präparationsschritte der thermischen Behandlung vergleichend untersucht.

2 Experimentelle Methoden

2.1 Aktivitätsmessungen


Die Temperaturmessung erfolgt vor und nach dem Katalysator. Es werden die Gaskomponenten NO und NO₂, Sauerstoff, die Kohlenwasserstoffe, Kohlenmonoxid, Kohlendioxid, Distickstoffmonoxid und Schwefeldioxid analysiert. Die Übersicht der verwendeten Analysengeräte und die Meßprinzipien sind im Anhang II tabellarisch aufgeführt. Das Kriterium für die Aktivität ist die sogenannte light-off Temperatur (lo-Temperatur) von Kohlenmonoxid und Propen. Diese beschreibt die Temperatur vor dem Katalysator, bei der 50 % der Gase zu den Oxidationsprodukten umgesetzt werden.

Für eine Aktivitätsmessung wurde ein Monolith mit Katalysatorpulver beschichtet (nähere Angaben zur Katalysatorpräparation siehe Abschnitt 3). Anschließend wurde aus dem Monolithen ein zylinderförmiger Kern (dₘ = 25,4 mm, hₘ = 76,2 mm) herausgebohrt und mit Quarzwolle fest in das Reaktorinnengehäuse eingepreßt. Um vor der Messung chemisorbierte bzw. physisorbierte Stoffe vom Katalysator zu entfernen, wurde dieser zunächst mit einem Kohlenwasserstoffanteil von 30 ppm Propen konditioniert.
Abb. 2.1 Fließbild der Synthesegasanlage
Nach der Konditionierung wurde der Katalysator wieder auf 75°C abgekühlt und zur Bestimmung der lo-Temperatur der Synthesegastest durchgeführt. Für die Konditionierung und den Synthesegastest beträgt das Temperaturenprogramm von 75 bis 350°C mit einer Heizrate von 15°C min⁻¹. Der Gasstrom entspricht einer Raumgeschwindigkeit (Verhältnis von Gasvolumenstrom zu Monolithvolumen) von 50000 h⁻¹. Nach der Konditionierung wird der Katalysator auf 75°C abgekühlt und der Synthesegastest mit einem Kohlenwasserstoffanteil von 90 ppm durchgeführt. Um die Reproduzierbarkeit der Aktivitätsmessungen zu überprüfen, wurde ein Katalysatorsystem viermal nacheinander gemessen und die mittlere Abweichung der lo-Temperatur vom Mittelwert Δx berechnet. Für Kohlenmonoxid beträgt diese Δx_{CO} = ±3,3°C und für Propen Δx_{HHC} = ±15°C. Die Meßwerte der Einzelmessungen sind im Anhang III zusammengefaßt. Exemplarisch ist in Abb. 2.2 ein Synthesegastest dargestellt.

![Diagram](image-url)

**Abb. 2.2** Exemplarerischer Synthesegastest der Modellgasanlage
2.2 Sorptionsmethoden

N₂-Adsorption

Die spezifische Oberfläche der unbehandelten und thermisch gealterten Trägeroxide von γ-Aluminiumoxid, Siliziumdioxid und des γ-Al₂O₃/SiO₂-Gemisches wurde mittels Stickstoffadsorption bestimmt [DIN66 131 93] [Seifert 87]. Die Messungen wurden mit einer Micromeritics2400 Anlage durchgeführt. Es wurden zunächst ca. 0,2 g Trägeroxidpulver eingewogen, 15 Stunden bei 100°C getrocknet und anschließend eine Stunde bei 200°C unter Vakuum entgast. Zur Bestimmung der spezifischen Oberfläche wurden sechs Meßpunkte im Partialdruckbereich \( p/p₀ \) von 0,05 bis 0,2 aufgenommen; die Linearitätsbedingung ist in diesem Bereich gut erfüllt und die Auswertung kann anhand der BET-Gleichung (Gl. 2.1) erfolgen. Bei der Auswertung wird entsprechend den IUPAC Empfehlungen [Sing 85] bei 77K ein Flächenbedarf von 0,162 nm² pro adsorbiertem Stickstoffmolekül angenommen.

\[
\frac{p/p₀}{n_a \cdot (1 - p/p₀)} = \frac{1}{n_m \cdot C} + \frac{C - 1}{n_m \cdot C} \cdot \frac{p/p₀}{p/p₀}
\]  

(2.1)

\( n_a \) adsorbierte Menge N₂ [mol g⁻¹]

\( n_m \) adsorbierte Menge N₂ bei Monoschicht [mol g⁻¹]

\( C \) BET-Konstante [-]

Die Form der Adsorptionsisotherme läßt bereits erste Rückschlüsse auf die Porengröße bzw. die Feststoffeigenschaften zu und wird nach [Brunauer 40] in 5 Klassen eingeteilt. Im Falle der Trägeroxide γ-Al₂O₃/SiO₂-Gemisch und γ-Aluminiumoxid liegt eine Typ IV-Isotherme vor, welche bevorzugt bei mesoporösen Materialien auftritt (Porendurchmesser \( d_p \approx 2 \) bis 50 nm).
CO-Chemisorption


$$D = \frac{N_s}{N_{tot}} \quad (2.2)$$

Die selektive Chemisorption ist die am häufigsten angewandte Methode zur Bestimmung der Dispersion. Die quantitative Bestimmung der adsorbierten Spezies auf der Katalysatoroberfläche kann volumetrisch, gravimetrisch bzw. bei spektroskopischer Detektion des Sondengases kontinuierlich oder nach der Pulsmethode erfolgen.

2.3 Thermoanalyse


2.4 Elektronenmikroskopie

Rasterelektronenmikroskopie

Transmissionselektronenmikroskopie


2.5 Röntgenbeugung

im Zeitraum ein bis 100 Stunden bei 750°C gealtert worden waren, am (111)-Reflex bestimmt. Die Katalysatoren hatten eine Edelmetallbeladung von 1,5, 3 und 10 Gew.-% Platin. Die mittlere Kristallitgröße wurde anhand der Scherrer-Gleichung [Warren 90] bestimmt (siehe Gl. 2.3). Es wurde die integrale Halbwertsbreite $\beta_H$ des (111)-Reflexes von Platin ermittelt, die Scherrer-Konstante $K$ wird somit zum Wert 1. Für die instrumentelle Korrektur wurde eine Cauchy-Reflexform angenommen; es gilt $\beta_H = \beta_s - \beta_R$. Hierbei ist $\beta_s$ die gemessene Halbwertsbreite und $\beta_R$ die Halbwertsbreite der Referenz.

$$L = \frac{K \cdot \lambda}{\beta_H \cdot \cos \theta}$$

(2.3)

Die Pulvermessung des Platinprekursors wurde an einem STOE STADI P Zweikreisdiffraktometer mit einer Kupferanode und einem gekrümmten Germanium(111)-Primärmonochromator durchgeführt. Der Vorteil des Primärmonochromators ist eine vollständige Abtrennung der $K_{\alpha 2}$-Linie. Das Diffraktometer ist in der STOE-Transmissionsgeometrie aufgebaut und besitzt einen linearen, ortsempfindlichen Detektor mit einer Fensteröffnung von etwa 7°. Der Detektor erlaubt eine um den Faktor zehn geringere Zeitdauer zur Aufnahme vergleichbarer Diffraktogramme gegenüber herkömmlichen Szentillationszählern. Nach sorgfältiger Justage sind Messungen mit einer absoluten Winkelgenauigkeit von $\Delta \theta = \pm 0.01°$ möglich.

Die Ofenmessungen wurden mit einem Original STOE-Ofen in Transmissionsgeometrie vorgenommen. Der Ofen besteht aus einem Graphitblock, der während des Ofenbetriebs zwecks Vermeidung einer Oxidation mit Stickstoff umspült wird. Für die Ofenmessungen stand ein fest installierter ortsempfindlicher Detektor zur Verfügung. Der Detektor ist gekrümmt und erfaßt simultan einen Winkelbereich von 40° in $2\theta$ mit einer Auflösung von 0.03°. Bei den Messungen bis 550°C wurde die fein zerriebene Probe in Quarzglaskapillaren vermessen.
2.6 Betrachtungen zur Partikelgrößenbestimmung

Bei der Diskussion der Größe von Partikeln ist eine genaue Definition erforderlich. Die Korrelation der Partikelgröße mit einem Durchmesser ist die einfachste Annahme. Haben alle Kristallite oder Partikel auf einem Trägeroxid die gleiche Morphologie, z.B. sphärisch, würzelförmig oder tetraedrisch, dann ist eine eindeutige Zuordnung eines Durchmessers möglich. In der Praxis ist dies jedoch nicht der Fall und man kann folgende Annahmen zur Beschreibung einer Partikelgröße anhand des Durchmessers machen:

Der einfachste Fall ist der Durchmesser als eine Gerade durch den Schwerpunkt des Partikels, begrenzt durch die Korngrenze. Weitere mögliche Definitionen sind (siehe Abb. 2.3) [Cadle 65]:

a) Das Kreisäquivalent beschreibt den Durchmesser eines Kreises, der die Projektionsfläche des Partikels besitzt.

b) Beim Kugeläquivalent wird das Partikelvolumen auf eine kugelförmige Geometrie bezogen und der Durchmesser einer solchen Kugel bestimmt.

c) Teilt man die Projektionsfläche eines Partikels in zwei gleiche Hälften, dann entspricht die Länge der Schnittgeraden dem Martin’s Durchmesser.

d) Den Feret’s Durchmesser ermittelt man aus dem Abstand zweier vertikaler paralleler Tangenten an die Projektionsfläche des Partikels.

e) Als Caliper Durchmesser bezeichnet man den maximalen Abstand zweier paralleler Tangenten.

In der Praxis zeigt sich, daß die mittlere Partikelgröße im wesentlichen von der Methode zur Partikelgrößenbestimmung abhängig ist. Methoden wie Chemisorption oder XPS, die im wesentlichen oberflächenempfindlich sind, liefern einen oberflächengemittelten Durchmesser $d_s$. Im Gegensatz hierzu wird die Reflexverbreiterung bei Röntgenpulvermessungen durch eine bulk-Information erzeugt. Entsprechend erhält man aus dieser Methode eine volumengemittelte Partikelgröße $d_v$. In Tabelle 2.1 sind die unterschiedlichen Definitionen der mittleren Partikelgröße sowie die experimentellen Methoden zusammengefaßt.

**Tab. 2.1 Definitionen der mittleren Partikelgröße und Methoden zur Bestimmung**

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Bestimmung</th>
<th>Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>längengemittelt</td>
<td>$d_l = \sum n_i \frac{d_i^2}{d_i}$</td>
<td>XRD, TEM</td>
</tr>
<tr>
<td>flächengemittelt</td>
<td>$d_s = \sum n_i \frac{d_i^3}{d_i^2}$</td>
<td>Chemisorption, XPS, TEM</td>
</tr>
<tr>
<td>volumengemittelt</td>
<td>$d_v = \sum n_i \frac{d_i^4}{d_i^3}$</td>
<td>XRD, EXAFS</td>
</tr>
</tbody>
</table>

Im Realfall wird nicht eine Partikelgröße zu beobachten sein; sondern die Partikel liegen in einer Größenverteilung vor. Bei einer engen Verteilung unterscheiden sich die Werte von $d_l$, $d_s$ und $d_v$ nur wenig (siehe Abb. 2.4). Ist die Partikelgrößenverteilung breit (siehe Abb. 2.5), dann können sich die Werte der mittleren Partikelgröße beträchtlich unterscheiden. Für einen direkten Vergleich der mit Chemisorption (flächengemittelte Größe) und aus EXAFS-Daten (volumengemittelte Größe) bestimmten Partikelgröße ist es erforderlich, daß eine enge Größenverteilung vorliegt.
2.7 Röntgenabsorption

2.7.1 Grundlagen zur kantenfernen Feinstruktur (EXAFS)

Ein monochromatischer Röntgenstrahl wird beim Durchgang durch Materie gemäß Gleichung 2.4 geschwächt. Der Verlust an Intensität I ist proportional der ursprünglichen Intensität und der Schichtdicke $x$, mit dem linearen Absorptionskoeffizienten $\mu$ als Proportionalitätskonstante:

$$dI = -\mu \cdot I \cdot dx$$

(2.4)

Nach Integration erhält man mit der Intensität des Strahles vor der Probe $I_0(E)$ und der Intensität des Strahles nach der Probe $I(E)$ folgenden Zusammenhang:

$$\mu(E) \cdot d = -\ln \frac{I(E)}{I_0(E)}$$

(2.5)


![Rohdaten-Röntgenabsorptionsspektrum von Pt auf $\gamma$-Aluminiumoxid im Energiebereich der Pt L_{III}- und Pt L_{II}-Kante](image)
In diesem Energiebereich sind die Pt \( L_{\text{III}} \)- und die Pt \( L_{\text{II}} \)-Kante zu beobachten. Je nach Grundzustand der angeregten Elektronen unterscheidet man die K-, L- und M-Kante.

Der Energiebereich einer Absorptionskante wird von 30 eV vor der Kante bis ca. 50 eV nach der Kante in den sogenannten XANES-Bereich (\( X \)-\( \text{Ray Absorption Near Edge Structure} \)) und von 50 bis 1000 eV nach der Kante in den EXAFS-Bereich (\( E \textxtended\) \( X \)-\( \text{Ray Absorption Fine Structure} \)) unterteilt. Der XANES- und EXAFS-Bereich der Pt \( L_{\text{III}} \)-Kante eines normierten Röntgenabsorptionsspektrums von Platin(IV)-oxid ist in Abb. 2.7 dargestellt.

![Diagramm](image_url)

**Abb. 2.7** XANES- und EXAFS-Bereich eines normierten Röntgenabsorptionsspektrums von Platin(IV)-oxid im Energiebereich der Pt-\( L_{\text{III}} \)-Kante


Photoelektron erzeugt (= vom Absorberatom ausgehende Kugelwelle), das vom benachbarten Atom zurückgestreut wird. Der Endzustand ist eine Überlagerung der auslaufenden und der rückgestreuten Kugelwelle, die entsprechend der Energie des Photoelektrons, konstruktiv oder destruktiv interferieren können. Diese periodische Änderung von \( \mu \) als Funktion der Energie wird allgemein als EXAFS-Funktion \( \chi(E) \) bezeichnet. Um einen Zusammenhang zwischen dem Röntgenabsorptionskoeffizienten \( \mu(E) \) und den Größen, die die Nahordnung um das Absorberatom charakterisieren, herstellen zu können, wird die Modulation des Röntgenabsorptionskoeffizienten auf die Untergrundabssorption \( \mu_0(E) \) bezogen und normiert.

\[
\chi(E) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}
\]  
(2.6)

Die Funktion \( \chi(E) \) wird in die Funktion \( \chi(k) \) umgeformt. Dabei ist \( k \) der Betrag des Wellenvektors des Photoelektrons (siehe Gl. 2.7). Dieser ergibt sich aus der Energie des einfallenden Röntgenphotons \( E \) und aus der Lage der Absorptionskante \( E_0 \). Dabei ist \( m_e \) die Ruhemasse des Elektrons und \( h \) das Plancksche Wirkungsquantum.

\[
k = \left( \frac{8 \cdot \pi^2 \cdot m_e}{h^2} \right)^{1/3} (E - E_0)
\]  
(2.7)

Die EXAFS-Funktion ist temperaturabhängig, dabei ist \( \chi(T,k) \) mit Größen verknüpft, die die Umgebung des Absorberatoms charakterisieren (siehe Gleichung 2.8).

\[
\chi(T, k) = \frac{N_j}{k} \cdot e^{-2 \sigma_j(T) k^2} \cdot \left| F_j(k) \right| \cdot e^{\frac{-2 R_j(T)}{\lambda_j(k)}} \cdot \frac{S_0^2(k)}{R_j^2(T)} \cdot \sin \left[ 2k \cdot R_j(T) - \frac{4}{3} c_3(T) k^3 + \phi(k) \right]
\]  
(2.8)

Zur Herleitung der EXAFS-Gleichung sowie damit verknüpfter Annahmen sei auf die einschlägige Literatur [Teo 86] [Koningsberger 88] verwiesen. Im Folgenden werden die wichtigsten Einflußgrößen auf Form, Phase und Amplitude der EXAFS-Gleichung beschrieben. Die Oszillationen des Absorptionskoeffizienten \( \mu \) sind vom Abstand \( R \), der Anzahl benachbarter Atome \( N \) und der Art des Rückstreuers \( j \) abhängig. Die mittlere freie Weglänge \( \lambda_j \) des Photoelektrons führt zu einer exponentiellen Dämpfung der EXAFS-Amplitude.
Ein weiterer wichtiger Beitrag zur Oszillation ist die statistische Unordnung und die thermische Schwingung der rückstreuenden Atome. Diese Verteilung wird in guter Näherung durch eine Gauß-Funktion mit der mittleren quadratischen Abweichung $\sigma_j^2$ (Debye-Waller Faktor) beschrieben. Die Rückstreuxamplitude $F_j(k)$ und die Rückstreuphase $\phi(k)$ sind elementspezifische Größen des Rückstreuers und lassen sich theoretisch berechnen.

Anhand dieser Überlegungen bietet die Messung der Energieabhängigkeit des Röntgenabsorptionskoeffizienten die Möglichkeit, lokale Umgebungen um das absorbierende Element zu bestimmen. Die Methode läßt sich auf geordnete oder ungeordnete Festkörper anwenden. Die erhaltenen Strukturdaten entsprechen immer einer Bulk-Information.

### 2.7.2 Grundlagen zur Nahkantenstruktur (XANES)

Der Nahkantenbereich wird allgemein als XANES-Bereich bezeichnet. In Abb. 2.8 ist exemplarisch der XANES-Bereich der Pt L$_{III}$-Kante von Platin(IV)-oxid und Platin(0) dargestellt. Dieser erstreckt sich über ein Energieintervall von ca. 30 eV vor der Kante bis ca. 50 eV nach der Kante. Im Falle des XANES-Bereichs der Platin L$_{III}$-Kante werden 2p-Elektronen in unbesetzte 5d-Niveaus angeregt. Neben der Platin L$_{III}$-Kante unterscheidet man hinsichtlich der L-Kanten noch die L$_{II}$- und die L$_{I}$-Kante.

![Normierter XANES-Bereich von Platin und Platin(IV)-oxid im Energiebereich der Platin L$_{III}$-Kante](image)

Abb. 2.8 Normierter XANES-Bereich von Platin und Platin(IV)-oxid im Energiebereich der Platin L$_{III}$-Kante

### 2.7.3 Experimentelle Durchführung der Röntgenabsorptionsmessungen

Sämtliche experimentelle Untersuchungen wurden am Hamburger Synchrotronstrahlungslabor (HASYLAB) des Deutschen Elektronen-Synchrotons (DESY) in Hamburg durchgeführt. Die Spektren wurden am Meßstand X1 in konventioneller Transmissionsgeometrie aufgenommen (Aufbau siehe Abbildung 2.9).

**Aufbau des Röntgenabsorptionsexperiments**

Bei einer ausreichend hohen Konzentration des Absorbers (wie im vorliegenden System ein Stoffmengenanteil von größer 0,01) kann die Intensität der transmittierten Strahlung zur Bestimmung der EXAFS-Spektren verwendet werden. Die Monochromatisierung der Primärstrahlung erfolgt an einem Doppelkristall, der auf einem Goniometer montiert ist. Gemäß der Bragg-Gleichung \( 2d \sin \theta = n \lambda \), wird die Energie des monochromatischen Strahls durch den Einfallswinkel \( \theta \) der Synchrotronstrahlung und den Netzebenenabstand \( d \) eingestellt. Dabei ist \( n \) das ganzzahlige Vielfache der Wellenlänge \( \lambda \). Die Monochromatisierung findet an der Si(311)-Ebene statt. Der Einfluß der höheren Beugungsordnungen wird in folgender Weise verringert [Heald 88]: Durch gegenseitige Verkippung der Einkristalle im Bereich von Bogensekunden wird die maximale Bragg-Intensität auf 60 % reduziert. Da die Profilform der höheren Harmonischen sehr viel schmaler ist, kann deren Anteil um ca. den Faktor 100 reduziert werden.
Abb. 2.9 Aufbau des Röntgenabsorptionsexperiments am X1 (DESY, Hamburg)

Die Transmission der Probe wird mit Hilfe von je einer Ionisationskammer vor und nach der Probe gemessen. Um Verschiebungen der Kantenlagen korrigieren zu können, wird während jeder Messung mit Hilfe der zweiten und dritten Ionisationskammer simultan das Spektrum einer Platinfolie (Spezifikation siehe Anhang V) gemessen.

**Probenvorbereitung**

Die Güte von Röntgenabsorptionsspektren wird neben dem experimentellen Aufbau insbesondere durch die Probencharakteristik bestimmt:
- statistische Verteilung des Absorbers
- Probendicke
- Temperatur der Probe während der Messung

Die Bedingung einer statistischen Verteilung der Probe ist für das untersuchte System erfüllt. Das Platin liegt in einer atomaren Form, bzw. als Cluster homogen verteilt auf dem Trägeroxid vor. Die Trägeroxidpartikel sind mit einem Durchmesser von < 50 µm ausreichend klein, so daß durch Tablettierung des Probenpulvers keine inhomogene Strahlabschwächung zu erwarten ist.
Die Intensitätsabschwächung eines Röntgenstrahles beim Durchgang durch Materie wird beschrieben durch den Massenabsorptionskoeffizienten $\mu/\rho$. Dabei ist $\rho$ die Dichte des untersuchten Elements. Der Massenabsorptionskoeffizient ist in erster Näherung unabhängig vom Aggregatzustand der betrachteten Komponente und ist entsprechend dem Anteil $g_j$ der Komponenten bei Mehrstoffsystemen additiv:

$$\frac{\mu}{\rho} = \sum_j g_j \left( \frac{\mu}{\rho} \right)_j$$  \hspace{1cm} (2.9)

Für das System 3,0 Gew.-% Platin auf $\gamma$-Aluminiumoxid wurde eine Flächenbelegung von 150 mg cm$^{-2}$ verwendet. Zusätzlich wurde jede Probe mit 50 mg cm$^{-2}$ Polyethylen (Merck, Uvasol, für die Spektroskopie) verrieben, um eine verbesserte mechanische Stabilität der Preßlinge zu erreichen. Hieraus resultiert eine Gesamtabsorption von ca. 3,0 und ein Kantenhub von 0,5 an der Pt L$_{III}$-Kante.


Durchführung des Experiments

Neben den EXAFS Experimenten an der Platin L_{III} Kante (11530 bis 11600 eV) wurde für die quantitative Bestimmung zusätzlich die Platin L_{II} Kante in einem Bereich von 13250 bis 13310 eV vermessen. Die Schrittweite betrug für beide Bereiche jeweils 0,5 eV. Die Zeitdauer für die Messung eines Spektrums betrug ca. 30 Minuten. Die Qualität einer Messung war ausreichend hoch, so daß keine Wiederholungsmessungen erforderlich waren. Die projizierte Fläche des Röntgenstrahls auf die Probe betrug 0,65 x 7 mm.

2.7.4 Datenaufarbeitung und Auswertung der EXAFS

Die Datenaufarbeitung und die Bestimmung der Strukturinformation wurde mit dem Programmpaket SPECTRA durchgeführt. Das Prinzip der Datenaufarbeitung und Auswertung wird nachfolgend beschrieben. Zunächst wird der Untergrund der EXAFS-Daten mit dem Programm AUTOBK [Newville 95] bestimmt und dieser anschließend entfernt. Hierzu wird das Spektrum ca. 100 eV vor der Absorptionskante linear angepaßt und auf den Nachkantenbereich extrapoliert. Anschließend wird der Kantensprung direkt an der Absorptionskante $\Delta \mu_0(E_0)$ berechnet und hieraus die EXAFS-Funktion in der Form

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu_0(E)}$$

 berechnet. Die Untergrundabsorption $\mu_0(E)$ entspricht dem Absorptionskoeffizienten eines isolierten Atoms, im Festkörper ist er nicht direkt messbar. Die Energieabhängigkeit der Funktion $\mu_0(E)$ wird durch eine Spline-Funktion angenähert. Anschließend wird $\chi(E)$ anhand von Gleichung 2.7 üblicherweise in einem Bereich von $k = 2$ bis 20 zu $\chi(k)$ in den $k$-Raum transformiert

$$\chi(k) = \frac{\mu(k) - \mu_0(k)}{\Delta \mu_0(k)}$$

und man erhält die experimentelle EXAFS-Funktion $\chi(k)$ in der Form (siehe Abb. 2.10):

![Abb. 2.10 $\chi(k)$ einer Platinfolie in einem Bereich von $k = 2$ bis $20 \text{ Å}^{-1}$](image-url)
Die Strukturinformationen wie Abstand des Absorbers zum Rückstreuer $R$ und die mittlere Anzahl benachbarter Atome $N$ zum Absorber werden anhand der EXAFS-Funktion mit dem Programm FEFFIT (siehe Anhang VII) berechnet. Hierzu werden zunächst die theoretischen Rückstreuamplitudenfunktionen $F_j(k)$ und Rückstreuphasenfunktionen $\phi(k)$ ab initio mit FEFF6 [Rehr 92] berechnet. Als Standards werden die kristallographischen Daten von Platin [Swanson 53] und PtO$_2$ [Siegel 69] verwendet. Die kristallographischen Daten der Referenzen sowie die Abstände der Koordinationsschalen sind im Anhang VIII aufgeführt. Für die Berechnung und Anpassung einer EXAFS-Funktion an die experimentelle EXAFS-Funktion werden unter anderem folgende Startparameter vorgegeben:

- theoretische Rückstreuamplitude und -phasenfunktion
- Wichtung der EXAFS-Funktion mit $k^n$ ($n = 1, 2, 3$)
- Bereich der Wichtung, z.B.: $\Delta k = 3,5$ bis $19,5 \, \text{Å}^{-1}$
- Anpassungsbereich der berechneten an die experimentelle Fouriertransformierte (Beispiel: $0,8$ bis $2,0 \, \text{Å}$ für Pt-O)
- mittlere Anzahl benachbarter Atome $N$
- Abstand des Absorbers zum Rückstreuer $R$
- Debye-Waller Faktor $\sigma_j^2$

Die experimentelle EXAFS-Funktion wird mit den vorgegebenen Startparametern in den sogenannten R-Raum fouriertransformiert und mit Hilfe der „Methode der kleinsten Quadrate“ im vorgegebenen Bereich die Fouriertransformierte berechnet. Die Wichtung von $\chi(k)$ mit $k^n$ ($n = 1, 2, 3$) soll der exponentiellen Dämpfung der EXAFS-Funktion $\chi(k)$ mit zunehmendem $k$-Wert aufgrund des Verlaufs der Rückstreuamplitude $F_j(k)$ und des Debye-Waller-Faktors entgegenwirken. Dabei setzt die Wichtung mit $k^3$ eine sehr gute Datenqualität voraus, da bei hohen $k$-Werten das Signal-Rausch-Verhältnis ungünstig wird. In Abb. 2.11 sind exemplarisch die berechnete und experimentelle Fouriertransformierte von Platinfolie als Drei-Schalenanpassung dargestellt. Die Wichtung erfolgt mit $k^3$, sowie $\Delta k = 3,5$ bis $19,5 \, \text{Å}^{-1}$ und der Anpassungsbereich im R-Raum beträgt $R = 2,0$ bis $5,5 \, \text{Å}$. Allgemein ist bei der Interpretation der Fouriertransformierten zu beachten, daß die Peak-Maxima zu $0,3$ bis $0,4 \, \text{Å}$ kleineren Werten verschoben sind. Die berechnete Fouriertransformierte wird in die EXAFS-Funktion $\chi(k)$ rücktransformiert und
die Strukturparameter bestimmt. Ergänzend sind die experimentelle und berechnete EXAFS-Funktion $\chi(k)$ in Abb. 2.12 dargestellt.

---

**Abb. 2.11** Experimentelle und berechnete Fouriertransformierte von Platinfolie

**Abb. 2.12** Experimentelles und berechnetes $\chi(k)$ einer Platinfolie in einem Bereich von $k = 2$ bis $20 \text{ Å}^{-1}$
**Beschreibung der nachgewiesenen Absorber-Rückstreuer Wechselwirkung**

In der vorliegenden Arbeit werden drei Fälle der Anpassung von Schalen unterschieden:

a) Platin-Sauerstoff (Abb. 2.13)

b) Platin-Sauerstoff und Platin-Platin (Abb. 2.14)

c) Platin-Platin (Abb. 2.15)

Diese drei Fälle werden nachfolgend anhand der Darstellung der Fouriertransformierten beschrieben. Der Nachweis einer Pt-O-Pt-Schale aus PtO$_2$ kann für die untersuchten Systeme nicht erbracht werden.

Fall a) In Abb. 2.13 ist die mit $k^2$-gewichtete Fouriertransformierte einer Katalysatorprobe dargestellt bei der lediglich Sauerstoff als Rückstreuer nachgewiesen wird. Die Sauerstoff Schale ist als Peak in einem Bereich von 0,8 bis 2,0 Å zu erkennen. Diese Schale entspricht der ersten Koordinationsschale von Platin in PtO$_2$. Die EXAFS-Funktionen dieser Proben wurden im Energiebereich von $\Delta k = 3,15$ bis 14,9 Å$^{-1}$ fouriertransformiert, die Wichtung erfolgte mit $k^2$ und die Einschalen-Anpassung in einem Bereich von 1,0 bis 2,3 Å.

Fall b) Die Abbildung 2.14 zeigt die mit $k^2$-gewichtete Fouriertransformierte einer Katalysatorprobe bei der neben Sauerstoff ($R = 0,8$ bis 2,0 Å) zusätzlich Platin ($R = 2,0$ bis 2,5 Å) als Rückstreuer nachgewiesen wird. Zur Berechnung der Fouriertransformierten werden simultan die Einfachstreupfade von Platin-Sauerstoff (= erste Schale von PtO$_2$) und Platin-Platin (= erste Schale von metallischem Platin) als Zweischalenfit in einem Energiebereich von $\Delta k = 3,1$ bis 17,9 Å$^{-1}$ verwendet. Die Fouriertransformierten werden in den Grenzen $R = 11$ bis 35 Å simuliert.

Fall c) Die Abbildung 2.15 zeigt die mit $k^3$-gewichtete Fouriertransformierte einer Katalysatorprobe bei der nur Platin als Rückstreuer nachweisbar ist. Die Fouriertransformierten der EXAFS-Spektren werden mit $k^3$-gewichtet und in einem Bereich von $\Delta k = 3,5$ bis 19,5 Å$^{-1}$ transformiert. Zur Berechnung der Fouriertransformierten in den Grenzen 2,0 bis 5,4 Å lassen sich simultan die Einfachstreupfade der ersten bis dritten Koordinationsschale von metallischem Platin anpassen.
Abb. 2.13 Fouriertransformierte eines Katalysators bei dem lediglich Sauerstoff als Rückstreuer nachgewiesen wird (Sprühverfahren, 3 Gew.-% Pt, PtR, γ-Aluminiumoxid, frisch adsorbiert)

Abb. 2.14 Fouriertransformierte eines Katalysators bei dem Sauerstoff und Platin als Rückstreuer nachgewiesen werden (Sprühverfahren, 3 Gew.-% Pt, PtR, γ-Aluminiumoxid, 500°C 2 h)
Abbildung 2.15 Fouriertransformierte eines Katalysators bei dem nur Platin als Rückstreuer nachweisbar ist (Sprühverfahren, 3 Gew.-% Pt, PtR, γ-Aluminiumoxid, Alterung: 750°C 100 h Luft)

Der absolute Fehler für die Bestimmung der mittleren Koordinationszahl liegt in einer Größenordnung von ±20 %. Für die Bestimmung des Abstands von Absorber zu Rückstreuer liegt dieser in einem Bereich von ±0,02 Å und für den Debye-Waller Faktor beträgt der absolute Fehler bis zu 100 %. Je nach Spektrenqualität sowie Anwesenheit eines bestimmten Rückstreuers können die Fehlerwerte stark variieren.

2.7.5 Quantitative Auswertung der XANES


![Kantenlagenkorrigiertes Rohdatenspektrum von Platinfolie im Energiebereich der Platin L_{III}-Kante](image.png)

Der Untergrund vor der Kante wird mittels der empirischen Form der sogenannten Victoreen-Gleichung

\[ \mu d = \frac{C}{\lambda^3} - \frac{D}{\lambda^4} \]  (2.12)

angepaßt, wobei die \( C \) und \( D \) Anpassungsparameter und \( \lambda \) die Wellenlänge der entsprechenden Energie ist. Anschließend wird die so ermittelte Untergrundfunktion des Vorkantenbereichs auf den Nachkantenbereich extrapoliert und der Untergrund subtrahiert. Ein entsprechend korrigiertes Spektrum ist in Abbildung 2.17 dargestellt.
Um Spektren verschiedener Proben vergleichen zu können, werden die Daten auf den Wert 1 normiert. Hierzu wird ein Polynom nullter Ordnung in einem typischen Energiebereich von 20 bis 50 eV oberhalb der Absorptionskante [Sayers 88] an das Spektrum angepaßt (siehe Abb. 2.18).

Im Folgenden wird die Berechnung der White-Line-Fläche beschrieben. Mit einem einfachen Lorentz-Ansatz kann der Bereich vor dem Wendepunkt der L_{III}-Kante nur unzureichend beschrieben werden. Eine Verbesserung der Anpassung an die gemessenen Spektren wird mit einer Pseudo-Voigt-Funktion erreicht. Als Anpassungsfunktion des
XANES-Bereichs wird die Summe einer Arcustangens- und Pseudo-Voigtfunktion verwendet (Gleichung 2.13). Die Anpassungsparameter sind im Anhang XVI beschrieben.

\[
\mu_d = 0.5 + \frac{1}{2} \arctan\left[ \frac{1}{2} \pi \left( [x - p_2] + A \left[ \frac{m_w \cdot \pi}{4} \cdot \frac{w}{w^2} \cdot \left( 1 - m_w \right) \right] \cdot \frac{1}{w^2} \cdot \exp \left[ -4 \cdot \ln 2 \cdot \left( x - x_c \right)^2 \right] \right) \right]
\]

(2.13)


Abb. 2.19 Anpassung der White-Line-Fläche der Pt L_{III}-Kante des adsorbierten PtR Salzes (frisch adsorbiert, Sprühverfahren, 3 Gew.-% Pt)

Die Anzahl der freien Parameter wird mit folgenden zwei Annahmen verringert:

a) Die Steigung am Wendepunkt der Arcustangensfunktion von 0,350 eV^{-1} wird anhand von Bulk-Platin ermittelt und für die weiteren Auswertungen als konstant angenommen.

b) Es ist der Trend zu beobachten, daß mit steigender Oxidationsstufe des Platins folgende Parameter größer werden:

- Differenz aus Lage des Arcustangens-Wendepunkts und Pseudo-Voigtmaximums

\[ y_d = p_2 - x_c \]

sowie das Maximum der White-Line-Intensität \( I_{\text{max}} \).
Mit metallischem Platin (Pt\textsuperscript{0}, kleinste White-Line-Fläche) und Platin(IV)-oxid (Pt\textsuperscript{4+}, große White-Line-Fläche) als Grenzwerte für \( I_{\text{max}} \) und \( y_d \) wird eine lineare Kalibrationsfunktion (Gleichung 2.14) bestimmt.

\[
y_d = 0,0054 \cdot I_{\text{max}} - 0,00534
\]  

(2.14)

Die Anzahl der freien Parameter wird somit auf \( A \), \( m_u \) und \( w \) reduziert und diese werden mittels eines Marquardt-Levenberg-Algorithmus [Kurzweil 90] bestimmt. Die White-Line-Fläche \( F \) wird durch Integration des Pseudo-Voigt-Anteils berechnet (Gleichung 2.15). Der Fehler bei der Bestimmung der White-Line-Fläche wird als Erfahrungswert angegeben und beträgt im Größenbereich von \( F = 10 \text{ eV} \pm 0,3 \text{ eV} \) und im Falle von \( F = 20 \text{ eV} \pm 1 \text{ eV} \).

\[
F = \int_{-\infty}^{\infty} A \cdot \left( m_u \cdot \frac{2}{\pi} \cdot \frac{w}{4 \cdot \left[ x - x_c \right]^2 + w^2} + \left[ 1 - m_u \right] \frac{\sqrt{4 \cdot \ln 2}}{\sqrt{\pi} \cdot w} \exp \left[ -4 \cdot \frac{\ln 2}{w^2} \left( x - x_c \right)^2 \right] \right) \mathrm{d}x
\]

(2.15)

Mit der Quantifizierung der White-Line-Fläche wird anhand von Referenzen der Valenzzustand von Platin bestimmt. Hierzu wurden für den Oxidationszustand Pt\textsuperscript{0} eine dünne Platinfolie, für den Oxidationszustand +2 das Salz [Pt(NH\textsubscript{3})\textsubscript{4}](HCO\textsubscript{3})\textsubscript{2}, für Pt\textsuperscript{4+} entsprechend PtO\textsubscript{2} gemessen und der XANES-Bereich quantitativ ausgewertet. Die Ergebnisse sind in Tabelle 2.2 zusammengefaßt.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Valenzzustand Pt</th>
<th>White-Line-Fläche [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinfolie</td>
<td>0</td>
<td>9,7</td>
</tr>
<tr>
<td><a href="HCO%5Ctextsubscript%7B3%7D">Pt(NH\textsubscript{3})\textsubscript{4}</a>\textsubscript{2}</td>
<td>+2</td>
<td>12,2</td>
</tr>
<tr>
<td>PtO\textsubscript{2}</td>
<td>+4</td>
<td>22,1</td>
</tr>
</tbody>
</table>