TU Darmstadt / ULB / TUprints

Erweiterung eines phänomenologischen Lidar-Sensormodells durch identifizierte physikalische Effekte

Tamm-Morschel, Jonas Franz (2020)
Erweiterung eines phänomenologischen Lidar-Sensormodells durch identifizierte physikalische Effekte.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011499
Master Thesis, Primary publication

[img]
Preview
Text (PDF)
Masterarbeit_743_19_Lidar-Sensormodell_Jonas_Tamm-Morschel.pdf
Copyright Information: CC BY 4.0 International - Creative Commons, Attribution.

Download (13MB) | Preview
Item Type: Master Thesis
Type of entry: Primary publication
Title: Erweiterung eines phänomenologischen Lidar-Sensormodells durch identifizierte physikalische Effekte
Language: German
Referees: Rosenberger, M.Sc. Philipp ; Holder, M.Sc. Martin ; Linnhoff, M.Sc. Clemens
Date: 2020
Place of Publication: Darmstadt
Date of oral examination: 5 November 2019
DOI: 10.25534/tuprints-00011499
Abstract:

Die voranschreitende Entwicklung im Bereich des hochautomatisierten Fahrens lässt den Wunsch nach einer simulationsbasierten Entwicklung der Fahrfunktionen und insbesondere deren Sicherheitsüberprüfung entstehen. Dies ist darauf zurückzuführen, dass sich durch eine Simulation beliebige Testszenarien mit geringem Aufwand generieren lassen. Das Testen in der Praxis ist hingegen aufwendiger und zeitintensiver. Auch ist eine Simulation wesentlich wirtschaftlicher als millionen Stunden von Testfahrten im realen Straßenverkehr zu generieren. Für eine möglichst praxisnahe Simulation der Fahrfunktionen sind realitätsnahe Modelle der eingesetzten Sensoren unumgänglich. Zu den für das hochautomatisierte Fahren zur Verfügung stehenden Sensoren gehören unter anderem Lidar-Sensoren. Sie lassen sich beispielsweise zur Umwelterfassung oder Abstandsmessung verwenden. Lidar-Sensoren basieren auf einem optischen Messprinzip, das auf das Aussenden und anschließende Messen der Laufzeit von zurückreflektierten Lichtstrahlen setzt. Ziel dieser Arbeit ist die Erweiterung des am Fachgebiet Fahrzeugtechnik der TU Darmstadt in Entwicklung befindlichen phänomenologischen Modells eines Lidar-Sensors. Dazu werden identifizierte physikalische Effekte in Versuchen parametrisiert und anschließend in das Sensormodell implementiert. Weiterhin erfolgen erste Vergleiche zwischen Modell und Realität. Die zu implementierenden physikalischen Effekte umfassen das Strahlmuster und die Strahlaufweitung von verschiedenen im Automobilbereich genutzen Sensoren. Ferner sind auch weitere sensorspezifische Eigenschaften berücksichtigt. Die untersuchten Sensoren sind der Ibeo Lux 2010, der Velodyne VLP32 und VLP16 und der Valeo Scala. Die Strahlaufweitung und das Strahlmuster sowie die Intensität, als Messgröße der Verlodyne Sensoren, und die Echopulsweite, als Messgröße der Ibeo und Valeo Sensoren, werden mit Hilfe einer Infrarotkamera untersucht und durch Versuche parametrisiert. Als wichtigstes Ergebnis der Versuche lässt sich festhalten, dass die gemessene Form und Größe von Strahlmuster und Strahlaufweitung von den Herstellerangaben abweichen. Dies führt dazu, dass eine Modellbildung auf Basis der Herstellerangaben unter Umständen nicht ausreichend ist. Die untersuchten physikalischen Effekte sind in das am Fachgebiet bestehende Sensormodell auf Basis der Versuchsergebnisse des Ibeo Lux 2010 Sensors integriert. Dazu zählen Strahlaufweitung, Strahlmuster und weitere sensorspezifische Parameter. Auch sind erste Ansätze bzgl. des Signalrauschens, der Signaldämpfung durch den Abstand und der Simulation des Spannungsverlaufs im Empfänger zur Berechnung der Echopulsweite implementiert. Die Ergebnisse der ersten Validierung des erweiterten Sensormodells im Bezug auf die Strahlaufweitung zeigen, dass diese mit steigender Entfernung an Einfluss gewinnt. Das ideale Sensormodell ist somit bei steigendem Abstand zwischen Objekt und Sensor unpräziser als das erweiterte Modell.

URN: urn:nbn:de:tuda-tuprints-114992
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 16 Department of Mechanical Engineering > Institute of Automotive Engineering (FZD) > Driver Assistance
Date Deposited: 21 Apr 2020 06:24
Last Modified: 09 Jul 2020 06:27
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11499
PPN: 464014158
Export:
Actions (login required)
View Item View Item