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Chapter 1

Introduction

The first observations of high ionic conductivity within the solid state had
already been performed in 1833 by M. Faraday [1-4] yet, to date, no uni-
versal “explanation” of the nature of the superionic conductors exists.

The fundamental understanding of this phenomenon has provided one
of the major challenges in the field of condensed matter science. The exper-
imental and theoretical approaches to the study of conduction processes
are often very complicated [6]. Nevertheless, a clearer picture of the be-
havior of superionic materials has emerged within the past few decades.
The solid state materials exhibit a high ionic conductivity, either of cations
or anions, which is comparable to molten salts (in the order of 1073Q " 'cm™!)
[7]. However, because of the huge variety in materials, neither the critical
temperature of the transition into the superionic phase, nor the critical
value of the ionic conductivity can be defined. The materials described in
this work, for example, show no sharp transition into the superionic phase
but undergo a gradual change of ionic conductivity. Numerous applica-
tions of these materials can be found ranging from gas sensors, electrodes,
fuel cells, to scintillators etc. [5].

The goal of this work was to utilize the potential that the different NMR
techniques offered for investigating BaF,-type superionic conductors and
in this way learn more about the structure and fluorine dynamics at dif-
ferent time and length scales.

Magic-angle spinning and temperature-dependent lineshape measure-
ments, especially on highly doped Ba;_,La,F,,, samples designed to clar-
ify the debate of the structure, were of imperative interest. Field cycling
(FC) data supported by theoretical analysis shed light on the movement
of the interstitial and original ions on the micro-scale. In contrast to FC
NMR, Static Field Gradient (SFG) measurements were intended to explore
the macro-scale and to give some information about the temperature de-
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Introduction

pendent diffusion coefficients.

This work consists of five main chapters: chapter 2 to chapter 6. A short
introduction to fast ionic conductors and to the structure of Ba; ,La,Fs,,
with its deviations is given in chapter 2. The background of NMR and
theories for understanding and analyzing the experimental data are de-
scribed in chapter 3. Experimental techniques and a description of spec-
trometers used, as well as the pulse sequences used for different experi-
mental purposes are presented in chapter 4. In chapter 5 the experimental
results are discussed in detail in order of the complexity of experiments
and data analysis. Chapter 6 summarizes the whole work.



Chapter 2

Fast Ionic Conductors

In the past 60 years huge efforts, both experimental and theoretical, have
been made in order to explain and describe the nature of fluorine dynam-
ics in rare earth fluorides [7,12-14]. Many materials having superionic
properties were discovered. Some of them and their ionic conductivity, are
illustrated in figure 211 It can readily be seen that not only crystalline ma-
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Figure 2.1: Arrhenius diagram of conductivity for a variety of fast ionic
conductors [15]. In the left bottom corner data for BaF, are shown. The
LaF; data are not presented on this diagram but in the temperature range
of from 1.8%10° to 3.0*10°xT~! /K~ the conductivity of LaF; is between -5

and -3 InoT (2 'em~'K) [116].



Fast Ionic Conductors

terials are exhibiting fast ionic conduction, but also polycrystalline ones,
ceramics, glasses, and polymers [7]. In fact, since the first observation of
superionicity [2], the types of materials found to act as solid electrolytes
are so numerous that various schemes for their classification into cate-
gories have been suggested. Categorization based on the form of their
Arrhenius plots of conductivity [10], the nature of the charge carrier [7], as
well as on structural aspects [16] have all been proposed.

Despite the diversity of the types of compounds which display fast
ionic conduction, there are several characteristics that most, if not all, such
substances possess. Since ionic transport and the dynamic properties of
solid electrolytes are determined by the interaction between the crystal
lattice ions, the common traits of this class of substances are most easily
understood when one considers the binding energy E; of a i" mobile ion
in a crystal lattice.
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J J "ij

where:

r; and r; are the ionic radii of mobile ions ¢ and stationary ions j

ri; is the inter-atomic distance

A,;j is the multiplicative factor dependent upon ion types

p is a constant, and ¢;, g; are the fractional charge of the mobile and fixed
ion species, respectively

«; is the polarizability of the j" stationary atom

Various interaction potentials having appeared in literature serve as the
basis for theoretical calculations [19] and are more or less similar to the
energy of a lattice ion in an early work of Flygare and Huggins [17].
Considering equation[Z.1] generalizations concerning factors which tend

to minimize E; and a priori enhance the conductivity of the mobile ions,
can be made. It is well documented that those compounds in which the
mobile species possess a small coordination number are generally better
ionic conductors than those with mobile ions having a large number of
nearest neighbors. For example, at moderate temperature LaF;, whose
fluorine ions have a three-fold cation coordination, has a much higher spe-
cific conductivity than BaF,, where each F~ is tetrahedrally coordinated by
cations. This is due to the fact that equation .1lis summed over all j lat-
tice ions. Such considerations are in essence equivalent to the observation
made by Kapustinskii that the Madelung constant increases with increas-
ing coordination number [18].



A second criterion enhancing conductivity is a large polarizability for
those atoms making up the immobile lattice. This increases the negative
term in equation ] thereby decreasing E;. One can easily picture that a
soft, highly polarizable atom is more apt to make room for an ion mov-
ing through the lattice. This fact is partially responsible for 3-PbF, being
the best conductor among conducting fluorides. Related to this preference
for having soft ions in the rigid sublattice is the fact that superionic ma-
terials exhibit structural phase transitions at relatively low pressures and
temperatures [31]. For example, the best fast fluorine conductor known
to date is a-PbSnF, [32-34]. It also turned out that the dynamics of flu-
orine ions in a specially prepared two-dimensional a-PbSnF,-sample are
anisotropic. Static field gradient measurements of the diffusion coefficient
D showed a higher value of D when the sample was oriented parallel to
the By magnetic field, figure
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Figure 2.2: Diffusion coefficients depend on the orientation for PbSnF, su-
perionic conductor. Circles: c-axis parallel to the B, magnetic field; trian-
gles: c-axis perpendicular to the By magnetic field.

An optimal, intermediate size exists for the moving ions in a given
lattice. For example, the activation energy for the transport of Ag™ cations
of hypothetical sizes was found to vary sharply with size in a-Agl [35].
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Fast Ionic Conductors

This is caused by ions of extreme sizes having to overcome large energy
barriers, due to the dominance of different terms in equation 2.1l The third
criterion to be mentioned here is that compounds having monovalent ions
tend to exhibit higher conductivities due to the smaller Coulomb force
acting on the mobile species.

Another important point in increasing the ionic conductivity is the
structure of the immobile sublattice and concentration of mobile ions. The
presence of numerous unoccupied sites within the immobile sublattice
will promote superionic behavior, but also requires the presence of low
energy pathways between these sites to enhance the mobility .. Also, the
bonding character plays an important role. The preferred coordination of
a mobile ion is a manifestation of the bonding character of the material.
It has been suggested that mixed bonding character is an essential charac-
teristic of good superionic conductivity by allowing the mobile ion to be
stable in several different coordinations during the diffusion process. One
more factor is also quite essential for the dynamics of ions: ionic charge.
Lower charges result in lower Coulomb energies during diffusion.

In this work, an example is studied in which the conductivity, in this
case that of the fluorine conductor BaFy, is increased through the introduc-
tion of a higher valent compound, LaF;.

2.1 Application

Solid ionic conductors can be divided into four classes [5]:

e ion exchangers are solids capable of exchanging some of the ions
that participate in their structure. This means a high mobility of the
two exchanging species at ambient temperature. Of particular inter-
est is the identity of the exchanging species and the capacity of the
solid for ion exchange.

e solid electrolytes are, ideally, electronic insulators but excellent con-
ductors of a single ionic species selected for an application. Four
criteria are used to judge the quality of a solid electrolyte:

1. the working-ion conductivity o;: must be high enough to make
the Ohmic losses tolerable under load conditions;

2. the transport number ¢;: should approach unity, t; = 0;/0 = 1,
where 0 = 0, + ) . 0; is the total electronic and ionic conductiv-

ity;



2.2 Lattice Defects in Ionic Crystals

3. the reaction window: the electrolyte must be chemically inert
under load conditions;

4. ease of fabrication into thin, homogeneous membranes of high
mechanical strength and density: use as a low-loss separator of
liquid or gaseous reactants.

e electrodes are mixed electronic ionic conductors into which an ion
may reversibly be electrochemically inserted as a mobile species, charge
compensated by electrons in a host-matrix conduction band. In ad-
dition, a satisfactory electrode material must be able to sustain re-
peated insertion-extraction cycles under working conditions; for low
Ohmic loss, the ionic conductivity must be high, especially in power
cells.

e chemical stores are similar to electrodes used for electrochemical
storage; however, in use, the mobile ions are inserted into or ex-
tracted from molecular species, and both temperature and activity
of the molecular species replace cell voltage as the variable control-
ling the insertion-extraction reaction.

Each of them has important applications with different fabrication require-
ments. Fast ionic transport is required in electric-power applications, and
various strategies are discussed for batteries. The design of new materials
begins with a theoretical model for ionic transport; the situation in sto-
chiometric compounds is compared with that in doped compounds, and
electrolytes are contrasted with mixed ionic-electronic conductors. The
most significant parameters for the synthesis are the factors that govern
the activation enthalpy AH,, for diffusion, the concentration ¢ of mobile
carriers, and the temperature T, for any phase transition from a normal
to a fast ionic conductor. Strategies for decreasing AH,, and increasing c
prove to be ion-specific, and the most successful strategies for each mobile
ion can be found in literature [5,35].

2.2 Lattice Defects in Ionic Crystals

The transport of matter depends upon the existence of structural imper-
fections, and many electrical and optical properties of ionic crystals are
likewise to be attributed directly to the occurrence of defects. One im-
portant group of imperfections is lattice defects. Their properties, in par-
ticular their ability to move through the lattice, are fundamental to the



Fast Ionic Conductors

understanding of many processes in the solid state. Three kinds of lattice
defects may be distinguished:

e atoms or ions of the crystal may be found at metastable positions in
the interstices of the lattice, between the regular sites of minimum
potential energy. Such sites are termed interstitial positions,

e lattice sites may be unoccupied vacancies,

e lattice positions may be occupied by foreign atoms or ions, which
may be taken up substitutionally at regular lattice sites, or if the im-
purities are small enough, they may occupy interstitial positions in
the lattice.

The next section will present detailed information about the formation of
lattice defects.

2.2.1 The Formation of Lattice Defects

Two possibilities for the formation of lattice defects were postulated by
Frenkel and Schottky, respectively. Firstly, a cation or an anion may be
displaced from its normal lattice site to a distant interstitial position. This
is the Frenkel defect, which consists of an interstitial ion, combined with
a vacancy. On the other hand, the Schottky defect consists of anion and
cation vacancies present in equal number. These defects are formed from
an ideal crystal if an equal number of anions and cations are removed
from their normal lattice points to external or internal surfaces. Figure
illustrates these two cases. To calculate the activation energy and thus
the formation of both types of defects, one has to consider a perfect sto-
chiometric crystal in thermal equilibrium, where the production of defects
leads to an increase in entropy. The respective number of each type of de-
fect present can easily be seen if the process of formation is looked upon
as the analogue of a chemical reaction. Applying the Law of Mass-Action
to the system in equilibrium results in:

1Ny

K= (N — 1) (N;: — ny)

(2.2)

where:

K concentration of defects

n; number of ions in interstitial positions (at equilibrium)
n, number of vacancies

N the total number of ions
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Figure 2.3: A schematic representation of different dynamical processes:
a-left vacancy diffusion (Schottky defect), b-interstitial diffusion (Frenkel
defect).

N; total number of possible interstitial positions
and for the formation of the Frenkel defects: n; = n, if now the degree of
this order is n; << N, then:

T;n;
NN;
If F; is the energy required to form a Frenkel defect and if the process is
assumed to occur at constant value, the following can be written:

K= =nl = NN;K (2.3)

B
K= - .
cap(—+1) 25)
1FE;
n; = NNiexp(—éﬁ) (2.6)

n; number of Frenkel defects at thermal equilibrium

The number of Schottky defects may be derived similarly by proposing
that a cation and an ion of the lattice interact with hypothetical sites be-
yond surface. The number of possible sites for reaction at the surface is
simply the number of ion pairs per unit area of surface. Bearing in mind
that the reverse process can occur if a surface ion drops into the vacancy,
the Law of Mass-Action gives:

Ty N
e 2.7)
E,
K = exp(—k—T) (2.8)
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where:

Ns number of ions pairs per unit area of surface

E, is the energy required to form both a cation and an anion vacancy
for a small degree of disorder n, << N:

Ny IV,
K =122 Ny = NN, K .
NN, = 1, N s (2.9
E,
= n, = Nexp(——) (2.10)

kT

The fact that ions adjacent to vacancies and interstitial ions have vibra-
tional frequencies different from the normal ions may be described by a
pre-exponential factor v = (%)”, where 1/ is the frequency of an ion adja-
cent to the vacancy; z is the number of ions which surround the vacancy;
and v is the normal frequency. These new factors lead to the modified

equation Zf and

n; =y NNiexp(—éﬁ) (2.11)
E

n, = CNexp(—k—%) (2.12)

(2.13)

where:

C'is a volume-dependent constant

Although in general both types of defects will occur, the respective en-
ergies necessary for their formation will usually be sufficiently different
in any given crystal to make one type of disorder predominant over the
other. Thus, if reliable estimates of the energies E; and £, can be made, it
becomes possible to predict whether Schottky disorder or Frenkel disorder
will predominate.

The first attempts at such calculations were made by Jost [36], who
emphasized the importance of the polarization arising when a vacancy or
an interstitial ion is formed. If polarization does not occur, the energy re-
quired to form Frenkel or Schottky defects in a crystal such as NaCl would
amount to some 10eV. However, due to the polarization of the regions
of the dielectric surroundings, the newly formed vacancies or interstitial
ions, the overall energy requirement is reduced to about 3eV. The energy
of the polarization in the case of the lattice defects is given approximately
by the equation:

Bpo = =—(1= ) (2.14)

€
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2.3 Crystal Growth

where:

e = electronic charge

a = radius of the ion

e = dielectric constant

When the sizes of the cation and anion in a crystal are sufficiently different,
as in BaF,, there is relatively more space for the smaller, F~-ions in an inter-
stitial position, with the result that the repulsive forces are not so strongly
lowered. Furthermore, the introduction of a particularly small ion into an
interstitial position will be accompanied by correspondingly large gains
in polarization energy. These factors cooperate to render Frenkel disorder
(Frenkel defects) of the smaller ion more favorable [52]. In addition to the
relative size of the ions, other factors require consideration in assessing
the relative magnitudes of E; and E,. For example, Frenkel disorder is
favored by a large dielectric constant. As equation shows, this leads
to an increased contribution by the polarization energy, thereby offsetting
the high repulsion energy. The Van der Waals energy arising from disper-
sion forces may also acquire importance. An ion in an interstitial position
has a much higher Van der Waals energy than a normal lattice ion due to
the close proximity of its neighbors. When an ion moves into an interstitial
position, the magnitude of the gain in Van der Waals energy will clearly
be greater than the Van der Waals energy of the ideal crystal. Thus, for
crystals with high Van der Waals energy, this effect, which in combination
with polarization operates against the repulsive energy, may be sufficient
to render Frenkel disorder more likely than Schottky disorder. This is the
case for fluorides [52] .

2.3 Crystal Growth

One of the methods for growing crystals is the Bridgman technique [37].
This method offers the possibility to grow crystals from aqueous solutions
in cases where the solubility of the solute is very high. In such cases large
quantities of solute are required to obtain a saturated solution, even in a
small crucible, where not necessarily all of the material discharged in the
cooling range goes to the growth of one crystal. Smaller volumes of so-
lution and hence smaller amounts of solute can be used in the Bridgman
variation, and operation can be performed at higher temperatures to in-
crease the amount of solute if required. However, temperature gradients,
stability at room temperature, imprecise control of the rotation of the crys-
tal and other factors, combinded with complicated phase diagrams can
produce problems in obtaining high-quality single crystals.

13



Fast Ionic Conductors

The crystals made for analysis (Ba;_,La,F2;,, 0.0005 < x < 0.45) were
grown under vacuum (0.13 Pa) at = 1750K by Dr. Reiterov, by the Bridg-
man technique, using a radio-frequency (RF) heater. Out-gassed graphite
crucibles containing intimately mixed powders of BaF,, LaFs;, and PbF,
as a scavenger for remaining oxygen and water vapor were loaded in a
quartz tube which served as growth chamber. At this point it should be

fluoride atmosphere a (H,0) a (HF) a(F) a (main hydrolysis product)
LiF 100% Ar 9.6x107 4.3x10* 2.3x10"7 0.21 (LiO_ )
100% HF 1x10° 1.0 3.7x10710 3.5x10M (LiOth)
95% Ar + 5% CF, 1.6x10% 2.0x10¢ 3.7x10° 1.6x10% (LiO_ )
CaF, 100% Ar 9.1x107 1.8x107 9.7x10" 1.0 (CaO_ )
100% HF 1x10° 1.0 3.7x10710 3.5x10™(Ca0_))
95% Ar+ 5% CF, 1.6x10% 2.0x10° 3.7x10° 1.4x107" (CaO_ )
AlF, 100% Ar 3.8x1012 1.4x10® 1.3x10"7 1.0 (o -ALO,)
100% HF 7.4x107 1.0 1.4x10™" 2.7x107 (AIOF, )
95% Ar + 5% CF, 1.6x10» 2.0x10¢ 3.7x10° 3.4x10"2 (AlOFz_g)

Figure 2.4: Equilibrium activities a of LiF, BaF,, and AlF; at 800°C in dif-
terent atmospheres (1 bar total pressure). All atmospheres are assumed to
contain 1 ppm H,O (1x10~%=initial humidity) [53].

mentioned that an atmosphere containing water can cause chemical reac-
tions (F-+H,O < OH™+HF) and influence the equilibrium point of the
crystal growth (subsection 2.3.1, figure Z9). Table 2.4 compares the be-
havior of CaF,, LiF and AlF; in different atmospheres containing 1 ppm
residual water [53]. Figure demonstrates the influence on the surface
of the crystal when the atmosphere contains too much water. Diffraction
methods, Laue and powder X-ray diffraction did not reveal the presence
of segregated solute for small values of x (x = 0.0005, 0.01, 0.1, 0.3).

Figure 2.8 presents laue reflection pattern of Bag 45Lag 55F2.45 in which
doubled reflections represent a typical pattern formed when the crystal is
twinned. This may be related to the shape of the liquidus and solidus lines
in the BaF,-LaF; phase diagram [9].

The solid solutions with x = 0.3 and 0.45 were not single crystals over
the whole length and in the case of Baj ;Lag 3F; 3 remaining CaF, material
from the graphite crucibles was found additionally. It is very common to
use the same crucibles for fluorides and if the cleaning is not done properly
the new “mixture” can contain residual material. Figure .7 shows magic
angle spinning data for a powder sample of Ba,;Lag3F, 3, bottom, and

14



2.3 Crystal Growth

Figure 2.5: Picture of the surface  Figure 2.6: Laue reflection pat-
of the Bag 55Lag 45F2.45 sample un-  tern of BagssLagssFass.  Dou-
der the influence of H,O impu-  bled reflections represent a typ-
rities. Made using optical mi- ical pattern formed when the
Croscopy. crystal is twinned.

for pure CaF, used as a reference sample, top. On the left side of the big
Ba 7Lag 3F2 3 peak small CaF, is visible.

Not only X-ray diffraction but also other methods can give information
about the quality of the crystal. Another very appropriate technique is
Neutron Tomography, which measures neutron beam attenuation caused
by an object, sample, placed in the beam, between the n-source and detec-
tor.

11p.0) = eap( [~ Y ()i (2.15)

The difference in attenuation coefficients should be large enough to facili-
tate the distinction on the cross-sectional images of the sample.

The analysis of the object by neutron radiography is mostly done tak-
ing one or more 2D parallel projections. In some cases, however, the trans-
mission properties of the object seen from any angle are desired. This
can be achieved by rotating the object in angular increments over 180°
and calculating tomographic slices using the inverse Radon transform. As
an example, figure shows four different slices of Bag ;Lag 3Fs 3, where
small parts of the sample have different colors, which equate to differ-
ent attenuation coefficients and in this way show different concentrations
of elements in the sample. Combining this method with X-ray diffrac-
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Figure 2.7: Magic angle spinning data for the Ba, 7Lag 3F, 3-powder sam-
ple, bottom, and for pure CaF, used as a reference sample, top. On the left
side of the bottom spectrum, one additional CaF,-peak appeared. Stars
denote spinning side bands.

tion, identification of polycrystalline regions, which should be excluded
in further investigations, can be made. As already mentioned above, the
problems can be explained with the aid of the phase diagram, so a deeper
understanding of the phase diagram of the BaF;-LaF; systems is required.

16



2.3 Crystal Growth

Figure 2.8: Neutron Tomography of the Ba, ;Lay sF, 3. Four different ori-
entations and cross-sections. Different colors defined the different concen-
tration of Ba or La elements; green Ba, red La.

2.3.1 Phase Diagram

The history of experimental investigations of the BaF, system doped with
LnF; (Ln-lanthanum and lanthanides) began in 1914 [38], when the fusion
of YF; solid solutions and fluorite was found to have a maximum at about
12 mol.% of yttrium fluoride. Interest in these systems (or, more precisely,
in Ba;_,Ln,F,, solid solutions with the fluorite structure type) grew after
the production of the first lasers based on fluorides (CaF,:U*" [39]). Of the
important fields of use for materials based on the BaF,-LaF; system, mate-
rials for the optical processing of information [41-43] and the conversion
of IR quanta into visible light [44] must be mentioned; the components

17
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Figure 2.9: Phase Diagram of the BaF,+LaF;-system. Only the high tem-
perature part is shown [38].

and certain compositions of these systems are used as solid electrolytes
with high ionic conductivity [45,46], thin film condensors [40] etc. A pro-
nounced effect of La®*" impurities on the mechanical characteristics of flu-
orite [47] was noted. The fusibility within these systems is of interest for
an understanding of the electroslag melting of certain metals [48] and the
physicochemical basis of the process of thermal reduction of lanthanide
fluorides with calcium [49].

Despite the fact that numerous investigations of BaF,-LaF; system (and
its components) have been made, a large number of problems still remain
unsolved. The BaF;-LaF; system encompasses both pure BaF, and LaFs,
but also mixed components, called solid solutions. For the construction of
a correct phase diagram of these solid solutions, it is necessary to know
the temperatures of all phase transitions of the components within the in-
vestigated composition range. Earlier studies of systems containing LaF;

18



2.4 Solid Electrolytes with Fluorite Structure

have been invalidated because measurements of the oxygen concentration
of the specimens after thermal treatment were neglected [50,51].

The phase diagram of the BaF,-LaF; system for temperatures ranging
from 1250°C to the melting point (1500°C) is given in figure Z9, where
the phase designations are as follows: BaF,gg, solid solution with fluorite
structure; BaF,gg5+LaFssg, region where a mixture of the BaF, structure,
cubic and tysonite structure exists; LaFs;5g phase with tysonite structure.

The phase with fluorite structure is on the left hand side of figure
and the maximum concentration of LaF; possible within this structure
(BaFss5) is 50 mol.%. Attempts to grow single crystals with such high
concentraction may be accompanied by many problems connected with
the shape of the liquidus and solidus curves presented on the right side
of the phase diagram. Detailed analysis of this process can be found in
literature [38].

2.4 Solid Electrolytes with Fluorite Structure

There are several fast-ionic conductors having fluorite (CaF;) structure.
These not only include fluorine conductors, but oxygen conductors, and
lithium ones as well [5]. In the next section, precise descriptions of the
fluorite structure, formation of lattice defects and influence of these on
fluorine dynamics are given.

2.4.1 Fluorite Structure

The cubic fluorite crystal structure (space group Fm3m [38]) can be de-
scribed as a face-centered cubic (fcc) array of cations in which all the tetra-
hedrally coordinated interstices are filled with fluoride anions and the oc-
tahedrally coordinated ones are empty (see figure .10). However, to de-
scribe the nature of the anionic disorder it is often more convenient to illus-
trate the anionic arrangement as a simple cubic array of ions with cations
occupying alternating cube centers (see figure Z.TT)). Here each metal atom
is surrounded by eight anions and each anion is tetrahedrally coordinated
by four metal atoms.

Lattice distortions Much investigative work on the structure and disor-
der in BaF;-systems has been done by A. K. Cheetham, N. H. Andersen,
J. Schoonman and many others [54-60]. They proved that in the fluorite
structure, the doping by trivalent rare-earth elements R*" substantially en-
hances the disorder and ionic conductivity [62].

19
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e
Pzl
I

F- Ba2+

Figure 2.11: The cubic fluorite crystal structure, illustrated as a simple cu-
bic array of anions (F~) with cations (Ba®*) occupying alternate cube cen-
ters.
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2.4 Solid Electrolytes with Fluorite Structure

As already mentioned in section 2.3.1, the overall cubic, crystal symme-
try in case of Ba;_,La,F,., is conserved within 0< x< X, Where X0, =
0.5. The lanthanum ions substitute for the barium atoms and near each
lanthanum atom there is one charge-compensating F~ anion at an inter-
stitial site. At heavy doping (approximately x 2 0.01) the crystal defects
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Figure 2.12: Contour map of the diffuse elastic scattering for Ba,_,La,Fa.,
at room temperature, (a) x=0.209 (b) x=0.492. The labels on the contour
denote the arbitrary units of the intensity.

gather into clusters [54]. The lattice in the vicinity of the clusters is de-
formed, which leads to so-called defect regions [55,62] in the undeformed
fluorite lattice. Based on calculations, such deformations in BaF; have
been estimated earlier to be of the order of several percent of the lattice
constant and to be limited to the atoms in the close vicinity of the de-
fects [54].

Important evidence about the cluster structure and configuration in the
Ba,_,La,Fs., single crystals was obtained by diffuse neutron scattering
experiments [54, 55, 62] performed by A. K. Cheetham, N. H. Andersen,
J. Schoonman. They have been measuring a room-temperature contour
map of elastic scattering in the (011) plane for x=0.209 and x=0.492, which
is shown in figure These patterns bear a strong resemblance to the
high-temperature results of integrated quasi-elastic scattering intensities
in CaF,, [62] which could be reproduced very well by model calculations
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based on clusters similar to the 222 cluster defects. The 222 cluster con-
figuration is shown in figure With the distances given in units of

x;io
1 XX'&

.
;/‘J
* J* - I I

Baz+ La%* F, F, Int. V

=

Figure 2.13: Extrinsic defect clusters proposed to accommodate additional
F~ within the Ba,_,La,Fs,-system [54].

the lattice constant a, the 222 cluster can be characterized by the following
three defect features:

e randomly substituted pairs of lanthanum ions on barium sites,

e pairs of excess fluorine ions situated on interstitial sites but displaced
(66— i)az 2 along a (110) direction from the body center of the simple
fluorine interstitial cube,

e two relaxed fluorine ions displaced 3'/%¢ along the (111) plane from
a regular fluorine site.
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2.4 Solid Electrolytes with Fluorite Structure

The model calculation used by N.H. Andersen et al. [62] bases on the out-
line given by Hutchings et al. (1984) [17]. It took into account the various
ways in which the cluster can be formed according to the lattice symmetry.

2.4.2 Transport Mechanisms

In this section a general presentation of the transport mechanisms sup-
ported by experimental examples will be given. More detailed theoret-
ical treatment can be found in a number of texts (see, for example, the
reviews by Lidiard (1974) [113], Maier [112] and book Corish and Jacobs
(1973) [114]).

Diffusion In a crystal, the occurrence of diffusion is contingent upon the
availability of point vacancies throughout the crystal lattice. Diffusing par-
ticles migrate from point vacancy to point vacancy. Since the prevalence of
point vacancies increases in accordance with the Arrhenius equation, the
rate of diffusion increases with temperature. This can be described by the
First Law of Diffusion:

D dC(r,t)

or

where J is the particle flux, C' is the concentration of the solute, D is the
diffusion coefficient, r is the distance into the substrate, and ¢ is the dif-
fusion time. The negative prefix indicates that the diffusing mass flows
in the direction of decreasing concentration. Combined with the Conser-
vation of Mass, the First Law of Diffusion, the Second Law of Diffusion
(known as Fick’s Law) can be derived, which states:

J = (2.16)

oC 6*C

= =D~ (2.17)
In order to solve Fick’s Law, an initial condition and boundary conditions
are required. One solution, in which the diffusion is caused by thermal
energy, is called free diffusion. In this case, the path of motion will be
followed, and the initial condition is defined by the particle being located
at its original position r, at time t=0. Taking that into account, the sec-
ond Law of Diffusion can be rewritten, introducing the probability density
P(r,t) of finding an individual particle at r at some later time t:

SP(7,t) D(S?P(F, t)

ot or?

(2.18)
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The solution then is the Gaussian propagator:

2
T
P(r,t) = (4= Dt) " 2eap(——— 2.19
(1) = (4mDH) Seap(— 1) (219
From this equation the mean square displacement or diffusion length, can
be derived, where t is the time since start of the diffusion.

(r?) = 6Dt (2.20)

This was derived by Einstein in 1905. Further information about different
solutions of the Law of Diffusion can be found in literature [115].

2.4.3 State of the Art

Taking a broader view of on the field of superionic conductors, some pro-
gress has been made by both, experimental [63, 64] and computational
[65] methods to reconcile the different superionic transition mechanisms
within fluorite-structured compounds. This section will provide a brief re-
view on this progress. It is now widely accepted that the fluorite-structured
halides SrF,, CaF,, and BaF, undergo a gradual increase of ionic conduc-
tivity towards the superionic state, characterized by the transition temper-
ature, T, (see table below, T,, the melting temperature). At this tempera-
ture, a peak in the specific heat C,, occurs and the ionic conductivity, o, be-
gins to saturate [13]. The high value for ionic conductivity observed in su-
perionic BaF;-type materials is almost entirely due to anion diffusion, ow-
ing to the comparatively large energy required for cation defect formation
and the large electronic band gap. The studies done by Figueroa, Chad-
wick, and Strange have focused attention on ionic diffusion in BaF, [66].

| ComrounD | T, (°C) | T,, (°C) |

CaF, 1150 1418
BaF, 960 1320
SrF, 1180 1320
PbF, 430 820

They attempt to resolve the discrepancies and provide quantitative and
reliable determinations of self-diffusion coefficients in this system. In the
tirst step, the ionic conductivity was investigated throughout the temper-
ature range 450K-1125K [66]. In figure the results for nominally pure
BaF, are shown, plotting in ¢ as a function of reciprocal temperature.
Also shown are the results for four lanthanum doped samples, one potas-
sium doped and one oxygen doped sample. The conductivity of the pure
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2.4 Solid Electrolytes with Fluorite Structure

material spans eight decades and shows no evidence of extrinsic (charge
compensating) behavior. The absolute values obtained for the intrinsic
conductivity (thermally-induced) agree to within 4+ 20 % with the previ-
ously reported values of Fielder [67] and Barsis and Taylor [68]. However,
the values obtained by Figueroa are about 40 % higher than those mea-
sured by Bollmann [52]. The intrinsic behavior of the pure material does
not result in a simple straight line plot (Z.4.3). Activation energy calculated
from the temperature region 450K-800K is equal AE = 1.52eV for almost
all doped samples with the exception of BaF, doped with an unknown
concentration of O*~ impurities. At higher temperatures, an upward cur-
vature is apparent, indicating the presence of more than one conduction
mechanism. In this region the conductivity can be attributed to both F~
vacancy and F~ interstitial motion. Of the two, the vacancy has the lower
activation energy of migration, as can be seen from the conductivity results
of the doped samples. For the fluorite lattice, there are two possible diffu-
sion mechanisms that should be considered to involve interstitial ions: the
direct interstitial mechanism involving (110) jumps and the non-collinear
interstitially mechanism. This latter mechanism requires a much smaller
energy to produce the required ionic displacements [69].

The ionic conductivity results for BaF, containing various La*" im-
purity concentrations become superimposed at the highest temperatures.
The extrinsic regions give almost parallel plots with a gentle slope towards
lower temperatures, which can be ascribed to association of the La3* ions
with F~ interstitial ions. Figure shows the calculated self-diffusion
coefficients for different Ba;_,La,F,,, crystals. The dashed line repre-
sents the values calculated from conductivity data, assuming a vacancy
model [66]. It can be seen that the overall diffusion plot displays the same
general features for both techniques. Figure 2.4.3 shows that in the high
temperature region (above -~ 800K), the nuclear spin relaxation is due to
relative motion of the ions arising from the movement of thermally gener-
ated defects, which dominates over any contribution from impurities (i.e.,
the intrinsic range). At temperatures well below 800K, extrinsic diffusion
takes place. It should be noted that those two techniques analyze atomic
motions in very different ways. The NMR relaxation time method pro-
vides a spectrum of ionic jump frequencies, which must then be related
to ionic diffusion coefficients via a suitable theory. The method therefore
detects “local motion” on an atomic scale, whereas conductivity, which is
a bulk property, measures the motion of “charged” defects (e.g. vacancies
and interstitials) averaged over many jumps, and again must be related to
mass transport via a suitable theory.
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Figure 2.15. Temperature dependent conductivity data

for BaF,, crystals containing: ll 0.0285 mole % LaFj;

O 0.05 mole % LaF;; [10.0920 mole % LaF5;

O 1.2 mole % LaF; ®0.04 mole % KF; . . . . unknown
concentration of 0% impurities: — — — nominally pure BaF,.
Figure adapted from [66].
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Figure 2.16. Fluorine self-diffusion coefticients of
BaF, obtained from conductivity and spin-lattice
relaxation measurements. Single crystals containing
cation impurities: (a) 0.05% LaF3 , doped BaF,:
———Dg; @ DIMR(T7); ODNMR(T);

A DIMR(T1). (b) 0.04% KF doped BaF,:———DS;
ADNMR (7)) IDIMR (T ); B DIMR (7).
Figure adapted from [66].
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Chapter 3

Essential Aspects of Solid State
NMR Theory

In this chapter, some of the essential features and interactions in Nuclear
Magnetic Resonance will be considered. More details can be found in a
large number of books and reviews that cover this subject in much greater
detail [71-76].

3.1 The Phenomenon of Nuclear Magnetic Reso-
nance

Nuclear Magnetic Resonance observes the behavior of the magnetic mo-

ments of nuclei (macroscopic magnetization, M). This magnetic moment
is proportional to the spin according to the equation:

eh
=qg—/I1(I+1 1
U 912mp (I+1) (3.1)

where I denotes the corresponding spin quantum number, e is the elemen-
tary charge of the electron, m, is the proton mass, and g; depends on the
considered nucleus. The I manifold splits in an external magnetic field B,
into 2I+1 allowed values of the component of the nuclear spin along the
magnetic field. This component can be characterized by the magnetic spin
quantum number m;, which is in the range £/, and differs by | Am; |=1.
Therefore, in an external magnetic field, the available states are described
by 27 + 1 wave functions, which form a complete basis {| I, m;)}. Gen-
erally, in the presence of other spin interactions (such as quadrupole cou-
pling, dipole-dipole coupling, examples are given in the next sections), the
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Essential Aspects of Solid State NMR Theory

basis functions do not correspond to eigenfunctions of the considered nu-
clear spin. The function | I, m;) describes the eigenstates of the spin, and
thus it is called the eigenfunction. The interaction energies, eigenvalues of
the eigenstates can be written as:

E] = —’)/]FLBQ’I’I’L] = —w;hm[ (32)

The coefficient 7; refers to the gyromagnetic ratio, while the frequency
wy is called Larmor frequency. This nomenclature comes from the classi-
cal picture of magnetic resonance, where w; is the precession frequency
of the nuclear magnetic moment around the external magnetic field B;.
For transitions between two "neighboring” energy levels, w; is simply the
transition frequency. An ensemble of spins in the presence of a static ex-

- -1/2)

nE=how,

1+1/2)

Figure 3.1: Energy levels of spin I, where m I=j:%

ternal magnetic field B, leads to a macroscopic magnetization M aligned
along By. Magnetic resonance experiments are in most cases based on an
external magnetic field By, in which the sample is placed, as well as an
oscillating magnetic field B; perpendicular to By, that induces transitions
between the energy levels (Figure B.T)).

3.2 C(lassical Treatment of the Relaxation

Classical treatment consists of a macroscopic magnetization precessing on
a cone around By. A very good description of it can be found in the text
book of M. Levitt [76]. For this work more attention is put on the ef-
fects of relaxation which can be in general described as a phenomenon
that brings spin systems back towards their equilibrium state. In NMR,
it is a reinstatement of nuclear magnetization M to its equilibrium con-
tiguration after it has been perturbed. The longitudinal component of the
magnetization (parallel to the applied static magnetic field Bj) recovers
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3.2 Classical Treatment of the Relaxation

to the equilibrium magnetization with a relaxation time 77, called spin-
lattice relaxation time, while the transverse magnetization (perpendicu-
lar to magnetic field By) disappears with the spin-spin relaxation time T5.
Due to the transverse relaxation mechanism (the spin-spin relaxation), the
spin system establishes thermal equilibrium within itself, while the longi-
tudinal (spin-lattice) mechanism brings the system to thermal equilibrium
with the lattice. The consideration of only two relaxation times is a simple
view. Nevertheless, this simplified picture is very useful in understanding
the basis of spin relaxation.

To perturb a spin system from its equilibrium configuration or to take
it back to its equilibrium state transitions can be induced. The longitudinal
relaxation involves energy exchange between the spins and the lattice. If
the population of the high energy state of a particular spin state is larger
than its equilibrium value, it will relax back towards equilibrium by spins
flipping from a high energy to a low energy state. The lattice then gains
the energy released from the spin population and for example transfers
it to the atomic motion. However, the relaxation transitions can only oc-
cur if there is an interaction that couples the motion of the molecule to
the spin states. Depending on the system, relaxation processes are caused
by the various interactions to which nuclear spins are subjected. All ele-
mentary magnetic moments in a macroscopic sample sense local magnetic
fields arising from various effects. One of the most common relaxation
mechanisms is the one caused by dipole-dipole interactions between the
magnetic moments.

Another important point should be mentioned: to cause relaxation, the
interactions must fluctuate in time. The spin interactions are mediated by
various motional processes, like translation diffusion, exchange motion,
lattice vibrations, etc. Thus, the local magnetic fields created by these in-
teractions fluctuate in time and should induce transitions. The time scale
of the fluctuations should be appropriate to provide an efficient mech-
anism for spin transitions. All the mechanisms which contribute to the
spin-lattice relaxation also contribute to the spin-spin relaxation, because
the restitution of the equilibrium populations brings zero magnetization
in the plane perpendicular to the B, direction. There are, however, pro-
cesses which influence the transverse relaxation, but do not affect the lon-
gitudinal relaxation. These two processes are significantly different. Only
energy exchange with the lattice contributes to the longitudinal process.
Spin-spin flip-flop transitions do not involve energy exchange between
spin and lattice, therefore they do not contribute to the spin-lattice relax-
ation, but they do contribute to the spin-spin relaxation. For this reason,
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Essential Aspects of Solid State NMR Theory

the transverse relaxation is called spin-spin relaxation. These two types of
relaxation are sometimes linked, in the sense that one influences the other.
The phenomenological description of the relaxation processes was done
by Felix Bloch in 1946 [117], and can be pictured using the following set of

equations:
dM, My — M,

pm 7 (3.3)
dM, M,
dM, M,
L= M (wo —w) = =7 (3.5)

dt Ty
where M,, M,, M, are the magnetization components along the z, y, z axes

(Bol|z), My is the equilibrium magnetization, wy is the Larmor frequency,
and w is the measuring frequency.

3.3 Quantum Mechanical Treatment

Although a classical treatment of NMR gives a good picture of the behav-
ior of the macroscopic magnetization, it cannot be successfully applied to
explain all effects and processes taking place in the micro-world. That
is why another approach has been taken to clarify the mystery of spin-
behavior. In this section, the new formalisms and a clear description of
the spin systems under different conditions will be given.

3.3.1 The Density Matrix Representation

One approach to describe the spin system is the method of the density
operator or density matrix. Considering a collection of identical spin sys-
tems, each of which can be in any one of N states labeled as v, it is possible
to describe the state of each individual spin system using the probability
py of it being in a particular state, ¢). This leads to the description of the
state of each spin system with W, where ¥ = }_ py1. The expectation

value of a quantity A with corresponding operator A over the sample is
given by:

(A) =3 py (el Aly) (3.6)
P

where the summation is over all the possible states for each individual
spin system, and where it could be assumed that the wave function ¥
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3.3 Quantum Mechanical Treatment

is normalized. The state of the system in a general form as a sum over
functions ¢; can be written:

=) cpiti (37)
substituting this into equation B.8 one gets:

(A) = D pe Y clicu(dil Algy) (3.8)
v i

The advantage of this approach is that the matrix elements of A in this
basis ((¢;|A|¢;)), are the same whichever state U one deals with. Defining
the >, pycy;cy,; to be ijth element of another matrix p, turns the equation

B8 for the expectation value of A into:

(A) = Tr(Ap) = Z(Ap)n‘ = Z Z Aijpji (3.9)

1

where A is the matrix of operator A in the {¢;} basis whose ijth element
is (¢i|A|¢;). The matrix p, called the density matrix, has a corresponding
operator which can be deduced by inspecting its matrix elements, i.e. p;; =

(9410l ¢i) = prwcchzi:
p=Y pul)(¥| (3.10)
P

Further details can be found in Goldman'’s text [79].

3.3.2 Coherences and Population

The diagonal elements of the matrix representation of the density operator
are equal to:

Pii = prcfmcm = i Cyi (3.11)
(4

The bar means “average over all the spins” or ensemble average, repre-
sented by ¢ in equation B.TT] the weighted sum over all possible states for
the spin system. Equation B.JT shows that p;; is simply the average popu-
lation of the ¢; basis function over the sample, as c¢; is the population of
the ith basis function. The off-diagonal elements of the density matrix are
then defined:

Pii = Y DuCyiCly; = CyiCl; (3.12)
P
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They represent the population of the basis functions in the state ¥’. If a dis-
tribution of spin systems among all possible states exists in a sample, then
the averaging over states from the equation causes the off-diagonal
elements to vanish. One condition has to be fulfilled: the off-diagonal el-
ements vanish if there is no correlation between the basis functions from
which the spin system states are derived over time. If the correlation be-
tween the basis functions exists, the average in equation no longer
vanishes, and off-diagonal elements of the density matrix will be non-zero.
This case is represented by a coherence between the ¢; and ¢; functions in
the state ¥, which describes the spin system.

3.3.3 Essential Aspects of the Perturbation Theory

The relaxation theory takes into account the random, time-dependent ef-
fects on the spin system caused by the environment. The theoretical frame-
work evaluates spin relaxation in terms of the time evolution of the den-
sity operator under the influence of a Hamiltonian as expressed by the
Liouville-von Neumann equation [80].

W0 _ 2L o] (3.13)

A solution to this equation is to be obtained by a perturbation treatment.
As for every theory, the perturbation theory is also based on a series of
assumptions which seem to play an important role in this work (chapter
5). The first one concerns the total Hamiltonian % which can be divided
into three parts H = A+ H#, + ;. The first two terms represent the
pure spin system and pure lattice contributions, respectively, while the
last one describes the coupling between them and contains parameters of
both, the spin system and the lattice. In other words, the first two terms
determine the energy level structure and the last one causes transitions
between them. By removing the .77, 7, contributions and leaving out the
perturbation spin-lattice coupling .7, the transformation of the density

operator p(t) and the perturbating Hamiltonian .77, into the interaction
representation can be made:

p/(t) — eih,%ztp<t)efihjft (314)

A (t) = M A (1) e (3.15)
The transformation leads to the new time dependent quantities p'(t) and
7, (t), referred to as interaction representations of the operators p(t) and
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H (t)11, respectively. This transformation simplifies the Liouville-von Neu-
mann equation to the form:
dp'(t) —i

= [%ﬂ p'(t)} (3.16)

explicitly involving the spin-lattice interaction .77, (t) only.

Another assumption says that the second order perturbation theory
describes the system well, called “the Redfield limit” [81,82]. If the spin-
lattice interaction fluctuates on the same timescale as the spin dynamics,
the perturbation approach breaks down and it is not possible to explicitly
define spin relaxation rates.

More information can be found in the following books: Purcell and
Pound [78], Solomon, Bloembergen and Morgan [83], Wangsness and Bloch
[84,85], Abragam [71], Redfield [81,82] and Kubo [86].

3.4 Nuclear Spin Hamiltonian

In this section, the Hamiltonian operators which describe some nuclear in-
teractions like dipole coupling, chemical shielding, and quadrupole cou-
pling will be considered.

3.4.1 Zeeman Interaction

In an NMR experiment, the applied static field B, is, in general, orders of
magnitude larger than any local fields arising within the sample. As a re-
sult B, remains the quantization axis for the nuclear spins in the sample,
and many of these local fields have negligible effects on the spin states.
The spin Hamiltonian for the interaction of each spin with the static longi-
tudinal field B, is given by:

f%@jstatic == hBof]Z (317)
This is called the nuclear Zeeman interaction. The term —v, B, was already

defined as the Larmor frequency at the beginning of this chapter.

3.4.2 Dipole-Dipole Coupling

As was already mentioned, each nuclear spin possesses a magnetic mo-
ment and these interact through space (called dipole-dipole or dipolar
coupling). In solids, this interaction is a major cause of line broadening.
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The interaction Hamiltonian for dipolar coupling between two spins I and
S can be written as follows:

Hpp = — (£2) st (E - 3@) (3.18)

4 r3 5

The equation is expressed in spherical polar coordinates; after expanding
the scalar products, can be written:

A h?
%DD:—(Z—;)WZi [A+B+C+D+E+F (3.19)
where:
A=15, (300520 — 1) (3.20)
Lre o 54 2
B=— [usf n LSJ (3cos20 — 1) (3.21)
3ew  2oal y
C= 3 [ Sy + 1L Z} sinfcosfe” ¢ (3.22)
3Tra L7 al.w +ig
D= B [ S+ LSZ] sinfcosbe (3.23)
372 & 29 —2ip
E = 2 [I+S+] sin“fe (3.24)
312 4 - 20 +2i¢
F= 1 [ _S_} stn“fe (3.25)

I.,S,and [ ,S_ are the raising and lowering operators, respectively, act-
ing on spins / and S, 0 is the angle between the vector joining the two
nuclei and the vector of the main magnetic field, and r is the internuclear
distance.

In the dipolar Hamiltonian, the term A contains no spin-flip operators
and therefore is clearly exclusively diagonal: It connects state |1) with state
(1| and so on (figure B.2). On the other hand, term B contains flip-flop
operators, which flip one spin up and simultaneously flip the other one
down: B connects |3) with |2) in figure Term B has no diagonal matrix
elements for the |a/3) representation, but it has off-diagonal elements be-
tween two states which are degenerate. The terms C and D contain spin
operators, which can flip a single nuclear spin. The terms E and F contain
spin operators, which can flip two nuclear spins.
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Figure 3.2: Energy levels and spin flipping in the dipolar interaction sys-
tem.

3.4.3 The Chemical Shift

Electrons in the vicinity of a nucleus can produce a secondary field, which
contributes, together with the main magnetic field, to the total field at the
nucleus, and therefore changes the resonance frequency of the nucleus.
This secondary field is a shielding field. The frequency shift caused by
this field in an NMR spectrum is the chemical shift. The chemical shielding
Hamiltonian acting on a spin / is

Hig = —yhloBy (3.26)

By is the ultimate source of the shielding magnetic field, as it is B, that
generates the electron current, which in turn generates the shielding mag-
netic field. The term o is a second-rank tensor, called the chemical shield-
ing tensor. The electron distribution around a nucleus in a molecule is not
spherically symmetric. Therefore, the size of electron current, and hence
the size of the shielding, depends on the orientation of the molecule within
the applied field Bj. The shielding tensor describes how the size of shield-
ing varies with molecular orientation, and it can be represented by a 3 x 3

matrix:
Ozx Umy Ozz

0 = Oyz Oyy Oyz
Ozx Ozy Ozz

where z,y,z is the axis frame.
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3.4.4 Quadrupolar Coupling

A distribution of charge, such as protons in a nucleus, cannot be ade-
quately described by simply specifying the total charge. A proper charac-
terization is required, and it can be provided by a description of the charge
distribution as a series of multiples. The total charge is the zeroth-order
multiple; the electric dipole moment is the first-order multiple in the ex-
pansion. The next highest term is the electric quadrupole moment, which
is presented in figure All nuclei with a spin greater than  necessarily

06
90

Figure 3.3: Example of the distribution of charge which gives rise to an
electric quadrupole moment.

possess an electric quadrupole moment in addition to the magnetic dipole
moment. Electric quadruples interact with electric field gradients. This
interaction affects the nuclear spin energy levels in addition to the mag-
netic interactions already described above. The intensity of the interaction
depends upon the magnitude of the nuclear quadrupole moment and the
strength of the electric field gradient. The electric quadrupole moment of
a nucleus is generally given as e() (constant for a given nuclear species).

The quadrupolar Hamiltonian for a spin I (in case the interaction with
the applied field B, outweighs the quadrupolar term) can be written:

X eQ

The tensor eq describes the electronic field gradient; a component eq,3; a3
=x,y, zis the gradient of the o component of an electric field (E,, £, E.) in
direction 3. Two parameters, the quadrupole coupling constant x, and the
asymmetry parameter 7, are defined (in the electric field gradient tensor
principal axis frame) in the following way:

_ €q=Q
h

(3.28)
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no = qu_ oy (3.29)

In the case where the electric field gradient tensor has axial symmetry,
Qow = Qyy F -, the quadrupolar Hamiltonian in equation may be
expressed to first order in the applied field B, as

> X 2 ( 79 A2>
=——" 0—1) (31 -1 .
o ST = 1) (3003 ) 31 (3.30)
where 0 is the angle between the principal z axis of the electric-field gradi-
ent tensor and the quantization axis of the nuclear spin, the applied field
By. In the absence of axial symmetry, the equivalent expression is:

e%ZQ = ﬁ (300520 -1- anin280032¢) <3_fz2 — f2> (3.31)
where 0 and ¢ are the polar angles defining the orientation of the applied
tield B,. The equations are suitable when the quadrupole coupling con-
stant is much less than the Larmor frequency. In cases where the quadrupole
coupling constant is approximately one tenth of the Larmor frequency or
more, equations and B.3]] are inadequate, and second-order or even
higher-order terms must be included.

3.5 Correlation Functions and Spectral Densities

A fundamental quantity characterizing stochastic processes is the time cor-
relation function. For two states o(z) and 3(x) of a system, which are
time-dependent, a correlation function can be defined as follows:

(a(7)B(r)) = / / () B(0)W (2, 7lo, 7o) Wy (0)dods  (332)

The function W (x, 7|z, 79) describes the probability that the system is in
the state = at time 7 if it has been in the state z, at time 7, while W, is the
equilibrium distribution of states.

The Fourier transform of the correlation function gives a spectrum of
frequencies characterizing the considered motional process, and can be
described by the spectral density function:

J(w) = /O OO(a*(T)a(O))e_WTdT (3.33)

The spectral densities determine probabilities of transitions between spin
states, and as a consequence the efficiency of relaxation processes.
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3.6 Examples of Relaxation Processes

In this section, some of the applications of the relaxation theory will be
presented with special attention to the example of two 3 spins.

3.6.1 Relaxation of Two Identical Spins via Dipole-Dipole
Coupling

Firstly, two equivalent spins /; and I, of the spin quantum number %

coupled by a dipole-dipole interaction will be considered. Secondly, one
assumption is made: the inter-spin vector 7, determining the princi-
pal axis of the dipole-dipole interaction, changes its orientation with re-
spect to the direction of the external magnetic field due to rotational mo-
tion. The Hamiltonian .7 for the entire system consists of the pure spin
part H containing Zeeman couplings of the participating spins: H; =
%(]1) + j‘fz(lg) the perturbing part %’jL( ) = %DD(A,]Q)( ) provided
by the dipole-dipole interactions fluctuating in time due to the molecular
tumbling and the pure lattice part .7, describing the classical continuum
of rotational states of the lattice. For the sake of simplicity a different no-
tation is used i.e., the unperturbed Hamiltonian of the spin system looks
then like /%, = . = wy(I1. + I.), and the perturbing, spin-lattice coupling
like .74 (t) = #.(t). The basis is the Eigenbasis of the main Hamiltonian

4, and the dipole-dipole Hamiltonian can be represented by its matrix
elements in this basis. The relaxation matrix is then obtained straightfor-

wardly utilizing the matrix elements of the perturbing interaction . in
the eigenbasis of the main Hamiltonian.

3.6.2 Relaxation of the Spin System Containing i Spins
due to Dipole-Dipole Coupling to Quadrupolar Spin
System

The current section presents the spin-lattice relaxation of fluorine spins
(3) caused by dipole-dipole coupling to quadrupolar spins (as an example
Lu?t was used).

Polarization transfer processes. Considering the system which evolves
in time under the Hamiltonian .7 composed of the Zeeman interactions
and internal spin interactions, i.e. the quadrupolar coupling of the spins
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S, %(S), and the mutual I — S dipole-dipole coupling, H p(1,S5), the

total Hamiltonian can be written as:
H = (1) + H75(S) + HZ(S) + #5p(1, S) (3.34)

The index ‘zero’ in the symbols ,}?QO(S) and #3,,(I,S) denotes explicitly
that the quadrupole and dipole couplings are fixed (do not fluctuate) with
respect to the laboratory frame. The dipole-dipole interaction provides the
coupling between the spins I and S (the Zeeman as well as the quadrupo-
lar Hamiltonian represent a single spin interactions). If the coupling is
weak there is no communication between the two spins and they evolve
in time independently of each other. In a general case of several interac-
tions, all contributions to the total Hamiltonian have to be considered in
the same reference frame. The time evolution of an arbitrary system is
dependent on its initial state reflected by the initial density operator p(0).
The initial state is established by an initial Hamiltonian .7 describ-
ing the conditions at the time t=0. %" does not have to be equal to
the Hamiltonian .#, being responsible for the further time evolution of
the system. If the system reaches the required initial state the conditions
can be changed and then the system evolves in time under #, reflect-
ing the new situation. If the applied magnetic field is high enough, the
Zeeman part of the Hamiltonian determines the initial state of the spin
system. In the limit of high temperature approximation, which is easily
tulfilled at room temperature, the initial density operator is proportional

to the linear term in the Taylor series expansion of the Boltzmann factor:
r%zoinitial o
_ jfznztzal
kpT ~ _ 0
et =1 kpT

[87]. The initial density operator has in this case the
following form:

5(0) = 1 o (_%ﬂzo(f) + A(S)

Vs
Iy+ 25 .
21+ 1)(25 + 1) kT ) Izt 5z (339

When the system reaches the required initial state (full polarization) the
conditions can be changed by changing the magnetic field (field cycling
NMR) [87]. This means that the system evolves in time under the Hamil-
tonian .7 describing the new conditions.

Calculation of the evolution of the density matrix is done by obtaining
the eigenstates and the corresponding eigenvalues (energy levels) for the
entire system. In high magnetic field applied at the initial stage, the ini-
tial density operator does not contain any two-spin /-S terms or in other
words the high magnetic field makes all other couplings negligible com-
pare to the Zeeman coupling. However this does not mean that the spins
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S do not influence the evolution of the spins I. The coupling between
the two spins is provided by the I — S dipole-dipole interactions, influ-
encing the eigenvectors of the entire system. The dipole-dipole part of
the total Hamiltonian provides a coupling between the two sub-sets of
the basis functions corresponding to the different values of the quantum
number m;, so it connects the states with |Am;|=1. This coupling be-
comes especially efficient under certain conditions. If the magnetic field
is set to a value which leads to the Zeeman splitting of the dipolar spin
matching the energy splitting of the quadrupolar spin, the dipole-dipole
coupling causes polarization transfer processes. The mutual dipole-
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Figure 3.4: Magnetization profile of a LuFs;-powder sample in the fre-
quency range of from 40 kHz to 16 MHz. Typical “dips” due to polar-
ization transfer are observable. The fluorine spins have been initially po-
larized in a magnetic field of 35 MHz and an evolution time of 15 ms was
applied for the upper curve, open points. The lower blue curve was mea-
sured with 20 ms evolution time. Red, dashed lines demonstrate a few
exemplary frequencies (A, B, C, D) for which relaxation profiles are shown

in figures B35 B.:6,B7,

dipole coupling links transitions of the dipolar spin to some transitions
of the quadrupolar spin, so they cannot occur independently. However
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Figure 3.5: T; relaxation profile obtained by the field cycling technique.
The sample was polarized in a magnetic field of 35 MHz. Afterwards the
magnetic field was changed to the evolution field of v = 2733046 Hz (po-
sition “A” in figure 3.4). The duration, 7, of the evolution field was varied
in the time range of from 4 ms to 1.5 s. The detection field following the
evolution field was set to 40 MHz (cp. fig. 4.10).

the entire system conserves the total energy. The polarization of the dipo-
lar spins is transferred to the quadrupolar subsystem with the efficiency
directly related to the probability of the joint transitions. The probability
is determined by the square of the corresponding matrix element of the
dipole-dipole Hamiltonian |(r|#5p (I, S)|s)|2.

Experimental illustration of the polarization transfer processes occur-
ring in LuF; with the lutetium quadrupole spin S = 7/2. Figure B.4
presents fluorine spin magnetization detected versus the magnetic field.
The fluorine spins have been initially polarized in a magnetic field of 35
MHz. Afterwards the field has been switched to a much lower value. The
entire spin system has been evolving over a certain time period (called the
evolution time) under the Hamiltonian containing the quadrupole cou-
pling of the lutetium spins and the Zeeman couplings of the fluorine as
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Figure 3.6: T; relaxation profile obtained by the field cycling technique.
The sample was polarized in a magnetic field of 35 MHz. Afterwards the
magnetic field was changed to the evolution field of v = 7795013 Hz (po-
sition ”“B” in figure 3.4). The duration, 7, of the evolution field was varied
in the time range of from 4 ms to 4 s. The detection field following the
evolution field was set to 40 MHz (cp. fig. 4.10).

well as the lutetium spins corresponding to the adjusted lower value of
the magnetic field. The fluorine magnetization has been then monitored
at a magnetic field corresponding to a resonance frequency of 40 MHz by
measuring the amplitude of the FID signal. The data presented in figure
B.4have been obtained for two evolution times, 15 ms (open circles) and 20
ms (blue curve). It can be seen that most of the polarization transfer dips
exist at the same frequencies, except for the one around 11 MHz which
is visible only for the upper curve (evolution time 15 ms). The control
measurement performed later for the evolution time 20 ms did not show
any indication around this frequency. The reason for this discrepancy is
not clear, it could be caused by technical problems of the spectrometer.
Also the T, relaxation profile for the frequency 11620757 Hz presented in
tigure B.8 shows no indication of the polarisation transfer process. If the
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Figure 3.7: T; relaxation profile obtained by the field cycling technique.
The sample was polarized in a magnetic field of 35 MHz. Afterwards the
magnetic field was changed to the evolution field of v = 9495646 Hz (po-
sition "C” in figure 3.4). The duration, 7, of the evolution field was varied
in the time range of from 4 ms to 4 s. The detection field following the
evolution field was set to 40 MHz (cp. fig. 4.10).

experimental conditions are appropriate, it should be observable as an ad-
ditional decay on the top of the T relaxation profiles. An indication for
this extra decay at the beginning of the profiles can be observed inside the
"dips” (figures B0, B.& marks “A” and “B” in figure B.4). To clarify this
hint more detailed study should be performed. However, because of the
technical limitations it was not possible to measure signals at times shorter
than 4 ms.
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Figure 3.8: T; relaxation profile obtained by the field cycling technique.
The sample was polarized in a magnetic field of 35 MHz. Afterwards the
magnetic field was changed to the evolution field of v = 11620757 Hz (po-
sition “D” in figure 3.4). The duration, 7, of the evolution field was varied

in the time range of from 4 ms to 4 s. The detection field following the
evolution field was set to 40 MHz (cp. fig. 4.10).
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Chapter 4

Experimental Techniques

This chapter presents all experimental techniques and problems faced dur-
ing the measurements. More detailed discussion about used methods can
be found in a large number of literature references [75,76,94,95].

4.1 NMR-Lineshape

Experimental NMR fluorine spectra have been collected for a pure BaF,
single crystal and five doped crystals, Ba;_,La,F,, with x=0.0005, 0.001,
0.01,0.03, 0.1.

The experimental data for each sample consist of a series of about 20
spectra, collected from room temperature up to 1200 K. The upper temper-
ature limit depends on the admixture concentrations and is given by the
experimental line width approaching the resolution limit of the spectrom-
eter (500 Hz). For the measurements single crystals of approximately 4 x
4 x 8 mm? size were used. Their crystallographic orientation with respect
to the (100)-plane was checked using Laue diffraction. The samples were
sealed in quartz tubes under vacuum. Since the fluorine dynamics in all
samples can change irreversibly after heating [8], all crystals were heated
several times until no further aging could be observed.

Experimental setup The experimental setup is shown in figure BT and
consists of a TecMag Apollo Console, an ATM High-Power Amplifier, a
Temperature Controller and a PC.

Apollo Console The Apollo spectrometer is a digital NMR spectrometer
console manufactured by TecMag. It is equipped with two RF channels
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Main Computer

| | Temperature
Duplexer Controller

Apollo AMT RF
Console Amplifier

®
1oUSeN

Figure 4.1: A schematic representation of the lineshape spectrometer.

and an integrated pulse programmer. The NTNMR controlling software is
Windows NT based and an important feature is OLE control that enabled
us to write Visual Basic control programs to provide a high level of au-
tomation and control. A schematic diagram is shown above to illustrate
the operation of the RF transmitter. Here brief explanation of the func-
tion of each component marked in figure E2is given. The RF synthesizer
(1) produces an oscillating electrical signal with a well-defined frequency
which is the spectrometer reference frequency, denoted ref w,.;. The syn-
thesizer output wave is given as Sy,,; ~ cos(wyest + ¢(t)) where ¢(t) is
the RF phase controlled by the pulse programmer (3). The pulse gate (4)
is a fast switch closed at defined moment to allow the RF reference wave
to pass through. The effect is to create an RF pulse with finite duration.
The duration of the RF pulse is referred to as the pulse width, determined
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RF synthesizer —— @ shifter
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Figure 4.2: A schematic diagram of the RF transmitter.

by the pulse gate (4) and the pulse programmer (3). The RF amplifier (5)
is to scale up the gated wave to produce a large-amplitude RF pulse for
transmission to the probe.

The Apollo spectrometer is controlled by the NTNMR software through
two PCI cards, one is used to upload data to the main computer during
and after data acquisition, the other one is responsible for all other com-
munication between the main computer and the Apollo system, such as
uploading pulse program data from the main computer to the system in-
terface board.

4.1.1 Signal Processing

A schematic of the receiver section, key to signal processing is presented
in figure Some components ((1), (8) and ADCs) are built-in the Apollo
console. The NMR signal arrives at the duplexer (6) and is diverted to-
wards the signal preamplifier (7) which is a low-noise R.F. amplifier which
scales up the weak signal to a more convenient voltage level. This sig-
nal is a continuous current or voltage which must be converted into dig-
ital form for further interpretation and presentation on a computer. But
the original NMR signal oscillates at very high frequency, tens or hun-
dreds of MHz, which is too fast for the ADCs (analogue-to-digital con-
version). The quadrature receiver (8) is designed to generate a new fre-
quency signal which is oscillating at the relative Larmor frequency (much
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Figure 4.3: A schematic diagram of the receiver section.

slower than original signal) by mixing the NMR signal, which oscillates

at the Larmor frequency wy, with the reference signal, oscillating at the

frequency w;.s. The relative Larmor frequency is Aw=wq-w;es. The offset
A

frequency 2_w is usually of the order of IMHz or less, enabling the sig-

nal to be handled accurately by ADCs. Now the output of the receiver is
S(t) ~ cos(Awt)exp(7; ) and the signal can be handled using the NTNMR
software which offers numerous functions. Examples which were applied
during processing are presented below.

e a baseline correction was performed to eliminate dc offset

e a left shift was applied to eliminate any remaining dead time signal

e an exponential multiplication was performed on the FID data set
with a function defined by f(t)=exp(-t value), where the value pa-

rameter was set to 100Hz.
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e once the signal in the time domain had been optimized, a Fourier
transform was then applied to transform the signal from time do-
main to frequency domain, and produce the NMR spectrum

e the crucial part of the signal processing, namely phase correction and
integration, was then performed. We compared the left and right
wing of the dispersion spectrum and adjusted the phase until the
absorption spectrum was symmetrical.

More about that can be found in the literature [98].

Missing points and linear prediction. Recording the free induction de-
cay (FID) signal, using one 7-pulse has the disadvantage of losing a few
points at the beginning of the signal because of the dead-time effect (4, fig-
ure £.4)), as mentioned above. This can be avoided by applying a different
pulse sequence, for example, the Hahn or Solid Echo and recording echo-
signals. Unfortunately, in the case of highly doped samples Ba;_,La,Fs.,,
x =0.01, 0.03, 0.1 it is impossible to reproduce both the chemical-shift and
dipole-dipole- interactions with this kind of pulse sequence. The pulse se-
quence presented below, therefore, was used to recover the data. To correct

90°
X . FD

Figure 4.4: The one-pulse sequence.

corrupted data points at the beginning of the FID signal a linear prediction
algorithm [99] was applied to do backward extrapolation of the recorded
time signal. To give a better understanding of the linear prediction, the
basic concept behind this term is presented below.
Considering a complex causal signal S(t) containing a single damped
exponential:
S(t) = Ae fitems2meot 4.1)

where A is a complex amplitude, R the damping coefficient, and w, the
frequency of the sinusoid. Sampling S(¢) at constant time interval A yields
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the time series {5 }:
Sp = S (kA) = Ae~Ftbei2munks — A 7k (4.2)

where Z is a constant with respect to k, and equal to: Z = e~ (FiHi2m0)& g~
ing basic properties of exponential functions, one can directly derive from
equation 4.2 that: S, = ZS,_1, Yk > 01i.e. the data points in the time se-
ries are linearly related. In this simple case, knowledge of two consecutive
data points S; and 5,4 is enough to fully characterize the time series, by

first computing Z = 221, Detailed information are provided in the article

S’L
of P. Koehl [99].

4.1.2 Magic-Angle Spinning

In the next two sections some methods to measure lineshape with the pos-
sibility of removing the “broadening parts” in the main Hamiltonian will
be presented. One of them is magic-angle spinning (MAS) which is used
routinely in the vast majority of solid state NMR experiments. Its pri-
mary task is to get rid of the effects of chemical shift anisotropy and to
assist in the removal of heteronuclar dipolar-coupling effects. In solution
NMR spectra, effects of chemical shift anisotropy and dipolar coupling are
rarely observed. This is because the rapid tumbling of the molecules in a
solution means that the angle 6 (figure L) describing the orientation of
the shielding tensor with respect to the applied field B, is rapidly aver-
aged over all possible values. This averages the (3cos?0 — 1) dependence
of the transition frequencies to zero on the NMR timescale. The aim of
magic angle spinning is to achieve the same result for solids. It averages
the anisotropy associated with any interaction which causes a shift in the
energies of the Zeeman spin functions, such as chemical shift anisotropy,
heteronuclear dipolar coupling, but no mixing between Zeeman functions
(to first order). However, it also has an effect on secular interactions which
mix Zeeman functions, i.e. homonuclear dipolar coupling.

Spinning sidebands In order for magic angle spinning to reduce a pow-
der pattern to a single line at the isotropic chemical shift, the rate of the
sample spinning must be fast in comparison to the anisotropy of the in-
teraction being spun out. Fast in this context means around a factor of 3
or 4 greater than the anisotropy. Slower spinning produces a set of spin-
ning sidebands in addition to the line at the isotropic chemical shift (figure
B.6). The spinning sidebands are sharp lines separated by the frequency
of the spinning and radiate out from the line at isotropic chemical shift. It
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Figure 4.5: A scheme of the MAS experiment. The sample is spun rapidly
in a cylindrical rotor about a spinning axis oriented at the magic angle
6=54.74° with respect to the applied magnetic field B,.

can happened that the line at the isotropic chemical shift is not necessar-
ily the most intense line. The only characteristic feature of the isotropic
chemical shift line is that it is the only line that does not change position
with spinning speed. This is the only reliable feature to identify it. More
detailed mathematical analysis of spinning sidebands can be found in the
literature [77].

Spinning sidebands can be also found in the time signal, where they are
called rotational echoes. These are simply explained as follows. Consider
a component of magnetization in the z — y plane of the rotating frame; the
evolution of this magnetization is what is recorded in the FID. This mag-
netization has an evolution frequency determined by the applied field B,
and chemical shielding. Suppose this component arises from a principal
axis frame of orientation («, 3, v) with respect to the rotor axis frame and
that the whole sample is spun at the magic angle. As the sample spins, the
evolution frequency is varied, because the crystalline orientation changes
with respect to the B, field, and so the chemical shielding changes too.
However, when the sample returns to its starting position, the evolution
frequency returns to its starting value and then goes through the same
cycle of values again. Thus, the FID corresponding to the magnetiza-
tion component consists of a sequence of repeated sub-FIDs or rotational

echoes (figure 7).

Magic-angle spinning for homonuclear dipolar couplings Asmen-
tioned at the beginning of this section, magic-angle spinning can be used
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Figure 4.6: The effect of slow speed magic-angle spinning. A set of spin-
ning sidebands appears, with a center-band at the isotropic chemical shift
and further lines spaced at the spinning frequency.

for removing the effects of homonuclear dipolar-coupling providing the
spinning speed is high enough. The dipolar-coupling Hamiltonian for a
homonuclear-coupled spin pair, I and S can be written as:

« 1 A A A A
Ao = —05(300520 —1)[3.S, —1-8] (4.3)

with C = (£)205% the dipolar-coupling constant. From equation 4.3, the
homonuclear dipolar coupling quite clearly depends on the geometric fac-
tor (3cos?d — 1), and so is averaged to zero by magic-angle spinning, if the
rate of spinning is fast compared to the homonuclear dipolar-coupling line
width. At spinning speeds much less than the dipolar line width, magic
angle spinning has very little effect on the NMR spectrum (figure 5.21). At
intermediate spinning rates (rates around a quarter to a half of the dipolar
line width), spinning sidebands appear, but these spinning sidebands are
different in character to those arising from incompletely spun-out chemi-
cal shift anisotropy or heteronuclear dipolar coupling, as it was mentioned
above. The spinning sidebands associated with chemical shift anisotropy
and heteronuclear dipolar coupling are all sharp lines. Those associated
with homonuclear dipolar coupling are usually broad. This can be under-
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Figure 4.7: The formation of rotational echoes. Fourier transformation of
the entire FID gives a line at the isotropic chemical shift flanked by spin-
ning sidebands as described in the text.

stood as follows. The term B in the homonuclear dipolar-coupling Hamil-
tonian mixes the degenerate Zeeman functions associated with the col-
lection of spins in the spin system. As shown in chapter 1, this mixing
is time-dependent if there are more than two spins in the system so that
the wave functions describing the spin system are time-dependent linear
combinations of the Zeeman functions. To average an interaction to zero
through magic-angle spinning, the state of the spin system needs to be
constant over the time for one period of the sample rotation. However, in
the case of homonuclear dipolar coupling, the state of the spin system is
changing on the timescale of the sample rotation, for intermediate sample
rotation rates. This prevents the complete averaging of the dipolar inter-
action in the spin system. At lower spinning rates, however, the rate at
which the state of the system changes is rapid compared to the sample
spinning. In this case, the spinning does not have a chance to alter the
time-dependent state of the spin system, hence the NMR spectrum of the
system is unaffected by the spinning. This does not happen in heteronu-
clear spin systems, as there are no degenerate spin levels in such a system.
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4.1.3 Multiple-Pulse Sequences

The simplest multiple-pulse experiment is the two-pulse Hahn echo [104]
which has been invented in the early days of NMR. Later new and more
complicated multiple pulse sequences were developed. As it was men-
tioned in the previous subsection, MAS NMR can be used to remove the
effects of dipolar coupling from spectra, providing the rate of sample spin-
ning is fast relative to the homonuclear dipolar line width. Another al-
ternative which also works with bulk samples is a sequence of special
pulses. Most multiple pulse sequences are arranged in such a way that,

sample sample
data data
90° :  90° 90° 90° 90° : 90°
x| x| |y yloIx| X
2t T 2t T 21
. 0 t

Figure 4.8: Multiple pulse sequence for removing the effects of homonu-
clear dipolar coupling from the NMR spectrum. All pulses are 90" pulses
with the phase indicated; WHH-4 sequence.

at certain windows within the pulses sequence, the effect of the dipolar
Hamiltonian on the nuclear magnetization is zero. If the nuclear magneti-
zation is detected only at these points, the effects of dipolar coupling are
removed from the spectrum. There are many useful sequences in the lit-
erature [77,100]. The first, and one of the simplest, is the WHH-4, shown
in figure .8 [100]. The MREV-8 sequence [77] which is twice as long as
WHH-4 also has wide applicability. In both sequences, the pulsing contin-
ues in cycles throughout the period of the free induction decay, with one
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detection point per cycle at the appropriate point until the magnetization
has decayed completely from the x-y plane. Rather than averaging the
geometrical parts of /"™ to zero in the way that magic-angle spinning
does, these pulse sequences average the spin factors of .#}"™ to zero. To
have a better understanding of these processes some important points of
average Hamiltonian theory are presented here. The density operator de-
scribing a spin system at time t, 5(¢) from that at time 0 can be calculated
from the equation:

pt) = U)p(0)U (1) (4.4)
where the so-called propagator U(t) is given by

A~

U(t) = exp(—iAt) (4.5)

in which .## is the Hamiltonian operator which describes the spin system
between 0 and t. This formulation of the propagator assumes that the
Hamiltonian is constant over the time period. Frequently, however, this is
not the case. For example, in the already mentioned WHH-4 sequence, the
Hamiltonian changes when RF pulses are applied. In these circumstances,
equation 4.5 for the propagator becomes

~

U(t) = exp(—idt,)...exp(—idtity) (4.6)

where the Hamiltonian which operates in the first time period ¢, is .74 and
so on. If the Hamiltonians in equation 4.6 appear in strict chronological or-
der, one can replace the series of exponential functions in this equation by
the propagator with a single exponential relying on some average Hamil-
tonian % which has the same effect as the series of Hamiltonian ./.. %’;,

ie.
U(t) = exp(—idt,)...exp(—isity) = exp(—it) 4.7)

Of course, this is always possible, but unfortunately not, always useful,
as in general, the appropriate average Hamiltonian # will depend on t.
The calculation of a single average Hamiltonian which will describe the
behavior of the spin system at this time can be made.

One way of doing that is to calculate the propagator U(t) by simply
evaluating the series of exponents in equation 4.7 appropriate to the par-
ticular periodic Hamiltonian of interest. This then equates to exp(—i#t),
so that .7 may be found by diagonalizing the matrix Ut formed from U (t)
in some appropriate basis. The eigenvalues resulting from this process
are then exp(—isZ;;t) for the jth eigenvalue, where .77}, is the matrix ele-
ment of H in the eigenvector basis arising from the diagonalization. This
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process is rather complicated and a simple solution can be used. This alter-
native approach evaluates the series of exponential operators in equation
4.8 using the Magnus expansion:

(A, B+ =([A,[A,B]| + [[A,B],B]) +..} (4.8)

If this is applied to equation 4.7 for a periodic Hamiltonian of period ¢, i.e.
t1 +to... + t, = t, to evaluate U(t,) one gets

U(t,) = exp(—iit,) 4.9)
H(ty) = A+ A+ A (4.10)
where
A = %{,%%tl + Aty + St (4.11)
A = —2%{[,%%, Sit] + [ Aoty Sots] + [ Aot At + .} (412)
A = ([t |Hits, At + ([ it Hits), At

6t,

(4.13)
b3t [t Aata]) 4 5[t Aata], ] + )

Equations 4.12 and 4.13 are not as daunting as they at first appear; the
first-order term .7 is simply the average of the piecewise Hamiltonians
,}?1, ..., which operates during one period. In the case where these
Hamiltonians all commute with each other, or nearly so, all higher-order
terms can be neglected and the first-order term is a good description of
the average Hamiltonian. Clearly if this is the case, the analytic form of
the approximate average Hamiltonian is easily determined and one can
tell up to certain point how a pulse sequence works.

In cases where the Hamiltonians which operate over the time period do
not commute with each other it is often possible to transform them into a
new frame, the so-called toggling frame. In this frame the non-commuting
terms disappear. To have a better understanding how the Hamiltonians
look in the toggling frame, one has to assume that all the WHH-4 pulses
are of negligible length compared to ¢, the gaps between them, and are
strong compared to the dipolar coupling, so strong that there is no cou-
pling during the pulse. Another assumption is that the pulses are all
on resonance and are defined with respect to the rotating frame, so that
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throughout the pulse sequence, the effect of the B, field apparently van-
ishes. This means the Zeeman term in the total Hamiltonian is zero. Then
the Hamiltonian for the system during a pulse is

%¢

pulse - -

wi (Iycosp + fysinqﬁ) (4.14)

where ¢ is the phase of the pulse and
=Y I. and I,=) I (4.15)

with I?, I’ being the single spin operators. The Hamiltonian during the pe-

x’ Ty
riods of free evolution is simply that of the homonuclear dipolar coupling,
in the absence of other interactions, namely

f%mmo = Z BZ](?)IA;IZ - iz : ij) (4:16)
i>j
where
o Ho\ V575 20
By (47T) T h2(3cos 0-1) (4.17)

]

In all these Hamiltonians, x, y and z refer to the rotating frame axes. Now,
the Hamiltonians describing the pulses and those describing the periods
of free precession do not commute with each other, so the first-order term
in the average Hamiltonian is not a good approximation to the full average
Hamiltonian, as it was mentioned above. In particular, the pulse Hamil-
tonians are a problem, as they do not commute among each other, that is,
I, in an z-pulse operator does not commute with I, in a y-pulse opera-
tor, and the WHH-4 sequence employs both = and y pulses To get rid of
these problems the transformation to a new frame, where the terms in the
Hamiltonian due to the pulses disappear, is needed. The average Hamil-
tonian in this new frame is then simply the first-order term of equation
(4.8).

In order to find this new frame one can consider a situation, in the ro-
tating frame, of an on-resonance x pulse with no other interactions present
and simply write the Hamiltonian

H = —w 1, (4.18)

pulse =
The density operator after time ¢ is given by the usual expression:

p(t) = exp(—iAt)p(0)exp(it) = expliwi [,t)p(0)exp(—iwy Lt)  (4.19)
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So the effect of the on-resonance x pulse is to rotate the density operator
by 4wt about z, or, equivalently, to rotate the axis frame so the density
operator p is defined by —w;t about x, where z in every case refers to the
normal, rotating frame axis. Thus, when considering the effect of a pulse
sequence we will rotate the axis frame in which the density operator is
defined. A rotation of the axis frame by —w;t about the pulse axis creates
the same effect as rotating the density operator by +w;¢ about the pulse
axis. The new, transformed frame is usually called the toggling frame. The

Hamiltonian .7*(t) after a time ¢ in such a toggling frame is in general
H*(t) = R\ ARy + w1, (4.20)

where R* = exp(—iw, I,t) represents the rotation operator for rotation of
the original axis frame by w,t about the rotating frame z axis, and 7 is the
Hamiltonian in the rotating frame.

So, in the case where 7 = 7, . = —wi1,, the toggling frame Hamil-
tonian can be written as:

,%2*(t) = —wlﬁm’lfm]%m +wl,;; Ry = exp(—iwlfxt) (4.21)

The first term represents a rotation of the operator I, about x, which of
course leaves the x direction, and so /,, unchanged. Thus .7*(t) becomes

() = —wr Iy +wi I, = 0 (4.22)

As expected, in this toggling frame the effect of the RF pulse is nulled.
The same frame transformation on the density operator takes account of
the pulse effects. Some general Hamiltonian in the rotating frame can be
written as

~

‘%? - ‘%Tbt + ‘%ﬁlse

(4.23)

A~
€T

where %, describes some spin interaction and 777, . describes an x pulse.
Transforming this Hamiltonian to the toggling frame using equation (3.20):

() = RV Ry + wi
= R;1 ’%%n + A:Zse Rx"‘w fm
o (A = Hpugoe s Fir Lz (4.24)
= R ARy + RV Ry + w1,
since R o o ) )
R HE R, = —wiexp(iw [t) [exp(—iw [,t) = w1, (4.25)
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4.1 NMR-Lineshape

as before. In other words, the toggling frame Hamiltonian depends only
on the spin interaction Hamiltonian %%nt and not on the pulse part. Vi
can then be used to calculate p*, the toggling frame density operator, using
an equivalent expression to that in equation (3.19):

p(t) = exp(—idt*t)p* (0)exp(id*t) (4.26)

where p*(0) is the initial density operator at time ¢ = 0 in the toggling
frame. Calculating the average Hamiltonian within the toggling frame
truncates the expression 4.32 for the average Hamiltonian to the first-order
term .7 only, providing that the toggling frame Hamiltonians which oc-
cur at different times in the time period considered, commute with each
other in this frame. The toggling frame density operator calculated in this
way is completely equivalent to the more usual rotating frame density op-
erator, but more simply expressed with respect to a different frame.

The principle of the toggling frame can be apply to calculate .7° which
in the first-order approximation for WHH-4 can be writen as:

o ST+ Ay + 250, + HyyT + AT

67
where
Sy + Hogy + S
=N By(IE -1 V)4 (L1 T V) + 31 -T.T)=0 *29)
1>]
using
I''V=0LD+11+1.1 (4.29)

In other words, there is no net interaction acting on the spin system at
the end of the pulse sequence to first order in the dipolar coupling; the
effects of the dipolar coupling have been averaged to zero to first order.
Important to notice is the fact that throughout this analysis the toggling
frame Hamiltonian has been expressed in terms of operators defined with
respect to the usual rotating frame. This allows the summation of Hamil-
tonian from different toggling frames. Furthermore, the toggling frame
density operator calculated from the final average Hamiltonian analyzed
in this way is then expressed in terms of rotating frame operators and is
therefore identical to the rotating frame density operator.

In this work chemical shift played a very important role. That is why
it was also interesting to determine what happened to any chemical shift
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terms under the WHH-4 pulse sequence. The Hamiltonian describing the
chemical shift is the usual

A

f%s - _wcs]z (430)

where w,, is the chemical shift and I, = > I . The first-order average
Hamiltonian for the chemical shift interaction is

Ir+Ilr+2lr+ 1,7+ 1 . . .
) T+ 1,7 + T+ 1yT + T:__wcs<]x+[y+]z) (4.31)

A=
s = W 67 3

The last part of this equation shows that all spins are scaled by a factor
of % while using WHH-4. The size of any interaction linear in I, will
be scaled by the same factor, and this includes any heteronuclear dipolar
couplings acting on the /-spins. All the pulse sequences are designed to
average out the effects of homonuclear dipolar-coupling scale chemical
shifts, though the particular scaling factor depends on the particular pulse
sequence.

4.2 Field-Cycling Spectroscopy

In this section some important information about the field-cycling experi-
ments is presented. There are basically two ways to achieve magnetic field
variation in order to measure a Nuclear Magnetic Relaxation Dispersion
(NMRD) profile.

The first one consists of mechanical translation of the sample between
areas with different field intensities [101-103]. However, it was not used
in this work; more about the design and difficulties can be found in the
work of H. Stork [97].

The second way uses electronic modulation of the current flowing th-
rough the coil of an electromagnet. This technique, commonly called Fast
Field Cycling (FFC) NMR relaxometry, permits very fast variations of the
tield induction. All the relaxation measurements have been performed
on a home-built fast field cycling spectrometer [94,95]. The FC-technique
avoids sensitivity problems of NMR in low magnetic fields by splitting
the experiment into three different phases [94], which are shown in fig-
ure B9 During the polarization period the sample is polarized in a mag-
netic field Bpo=1T. The relaxation process takes place in the evolution pe-
riod B., where the magnetic field is switched for a time ¢, to the desired
frequency w.. In the presented experiments these evolution frequencies
(fields; w=719rB) ranged from 20 kHz to 40 MHz (for 'H frequency). The
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Figure 4.9: A typical field cycle. The sample is polarized in a high mag-
netic field By, and the NMR signal is recorded in detection field B,;. The
relaxation process takes place during the evolution period t., where the
evolution field B, is switched to the desired frequencies.

detection of the remaining magnetization is performed again in a con-
stant, high magnetic B, by recording the free induction decay following
a g-pulse. The detection frequency has been 40 MHz. By varying the
time ¢.,, spent in the evolution field B, the corresponding spin-lattice re-

laxation rate --(w.) can be evaluated. For resonance frequencies above

16 MHz a Varﬁltion of the described FC-scheme has been used. The ex-
periments have been performed without a polarization period, so no de-
cay of the magnetization during ¢, has been observed, but the build-up
from zero. For higher frequencies this technique offers a larger dynami-
cal range, since the difference between the equilibrium magnetization in
the polarization- and the evolution- field becomes small. In an intermedi-
ate frequency range both techniques, i.e. with and without polarization,
have been applied and have shown no significant deviations. The setup is
equipped with additional coils to compensate for stray fields perpendicu-
lar to the B,. This is important to ensure adiabatic switching conditions at
low magnetic fields [94]. All temperature-dependent measurements have
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been performed using a home-built high temperature probe head, which
is presented in the next section [96]. A more detailed description of the
used Fast Field Cycling NMR Spectrometer can be found in the work of
O. Lips [8].

4.2.1 High Temperature Probe Head

For the investigation of fluorine dynamics it was essential to vary the tem-
perature up to 1200K. Therefore a new high-temperature probe head has
been designed [96].

The basic probe head (PH) parameters, i.e. the length, diameter, and
the number of windings of the high-frequency coil were limited by the
inner dimension of the magnet and the B, magnetic field generated by
the “main coil”. The probe head consists of an NMR Pt-coil placed at the
bottom and surrounded by a shielding cap with mini-furnace and ther-
mal insulation and water cooling. The cross section of the probe head is
shown in figure .T0 Since the sample is placed inside the high-frequency

Figure 4.10: Schematic representation of the high-temperature probe head.

coil and covered by the brass cap, an additional thermocouple (Type K)
was used. It is separate from the one which is on the outside wall to con-
trol the temperature of the cooling water. The heated-volume is small and
contains only the NMR coil with the thermometer. The NMR coil has 7-
9 windings of Pt-wire (diameter 0.6 mm). The inner diameter of the coil
is 5 mm in order to enable the insertion of NMR samples which are, for
example, sealed in NMR quartz tubes. The high frequency coil can easily
be replaced by a different one. Thermo-insulation is achieved by a spe-
cial porous ceramic material, with very low heat conductivity (KVS 161),
as well as the regulation of the circulating water. A thick oxide ceramic
plate which has three holes for all the necessary wires separates the sample
from the tuning part. Below it a copper support is used. The home-made
tuning elements, presented in figure are standard models for single-
frequency design. The coaxial tuning capacitor is of the sort in which a
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4.3 Static Field Gradient NMR

dielectric is inserted from one side and can be used to adjust the required
resonant frequency by varying the length of the dielectric part. The heli-
cal matching coil has 15 turns. Its inductance is tunable by a cylindrical
threaded brass rod with a diameter of 0.4 mm to permit optimal matching
to 50Q2 over the whole temperature range. The brass cap has spiral tub-
ing on the outside where the cooling water is running through, and the
Pt-furnace is placed inside. The micro furnace is made from a thick-wall
alumina (oxide ceramic) cylinder, shown in figure EETT], and a 0.4 mm Pt
heating wire. On the outer surface of the cylinder grooves were cut for

Figure 4.11: Furnace with Pt-wire and current plugs.

the winding of the Pt-wire. The wire was wound bifilar which guarantees
low stray fields and a weak coupling to the B;-field. The current plugs
were made of 1.2 mm Pt-wire and spot-welded to the ends of the heating
wire. The temperature was measured with a Type-K thermocouple, and
controlled with a home-made temperature controller. More details can be
found in literature [96].

During acquisition the furnace was switched off to avoid any influ-
ences on the NMR signal. Since the acquisition took at most a few mil-
liseconds this has no influence on the temperature stability.

4.3 Static Field Gradient NMR

The two NMR-methods presented until now, were using a magnetic field
with good homogeneity. The Static Field Gradient NMR (SFG), on the
other hand, is based on stable field gradients, which can even be found
in the techniques mentioned above, although they are not as strong as
specially introduced static field gradients. The main feature is the anti-
Helmbholtz design of split superconducting coils. The field profile and the
z-dependent magnetic field gradient of such a magnet (from Magnex Sci-
entific and Oxford Instruments) is shown in figure In the vertical
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Figure 4.12: Gradient profiles of the magnetic field in a Oxford magnet.

center of the magnet the magnetic field is zero but it increases rapidly if
the sample position is moved a few centimeters from the center and this is
the basic principle of all field gradient NMR techniques: the Larmor fre-
quency w = yrg(z) where g is the magnetic field-gradient vector, depends
on the absolute position of the spins in the inhomogeneous field r(t).

The experimental setup is very similar to the one shown in figure E.11
The differences are mainly in the receiver-part which is home-built, and
the ATM 2kW high-power transmitter was used instead of a 400W trans-
mitter, as in the case of the lineshape spectrometer.

4.3.1 Hahn Echo

A magnetization which has decayed in the rotating =’ — ' plane due to
external field inhomogeneity can be refocussed into an echo by an appro-
priate pulse. Such an echo is called a Hahn echo, figure and was used
for the static field gradient experiments. The first $-pulse produces coher-
ent transverse magnetization which evolves in the gradient field during
a dephasing period 7. The second m-pulse, inverts the sign of the net ac-
cumulated phase of the spins. Thereafter, the magnetization is still in the
transverse plane and the spins precess with their Larmor frequencies, thus
reducing their accumulated phases. As long as there is no change in the
positions of the nuclei, this re-phasing rate is the same as the dephasing
rate, so that at a time 27 the magnetization again reaches its coherent initial
state forming a spin echo.
The measured Hahn echo height S(7,t,,) is given by [107]:

3 _ 27

S(7) = Spe 370 PT T, (4.32)
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90° 180°

Figure 4.13: Pulse sequence for the Hahn echo in static field gradient ex-
periments.

4.3.2 Solid Echo

In dipolar coupled solids where the local field is not static a solid echo
is normally used. Broad lines, such as those arising from dipolar cou-
pling have rapidly decaying FIDs. To overcome this problem the solid
echo pulse sequence is very often used.

Considering again the Hahn echo sequence (7/2)g — 7 — (m)go — 7 —
echo. It should not give rise to any echoes in a dipolar system of one kind
of spins in solids because the second pulse simply inverts all spins and,
consequently, the local fields as well. A sequence which results in an echo,
however, is the solid echo (7/2)y — 7 — (7/2)gg — T — echo, T < T, figure
E.I4 Under the condition 7 << T5, the trailing half of the echo is equal to
the FID. Therefore, the solid echo is a good technique for overcoming the
effects of the deadtime in determining the FID shape.

Fourier spectra of the second half of echo signals were recorded for
”low concentration” of the admixtures for Ba; ,La,Fs,,, x = 0, 0.0005,
0.001.

4.3.3 Stimulated Echo

Another very useful pulse sequence is the stimulated echo which can ”stop”
the evolution of the magnetization under the influence of the field gradi-
ent. Figure shows the stimulated echo pulse sequence. After the first
pulse, the magnetization is in the transverse plane and the spins accumu-
late a z-dependent phase. The second 7-pulse turns the magnetization
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90° 90°

Figure 4.14: The Solid-Echo sequence.

90° 90° 90°
T tm

Figure 4.15: Pulse sequence for the Stimulated echo in static field gradient
experiments.

back in the z-direction, parallel to the magnetic field, and stops the evolu-
tion of the individual spins under the influence of the field gradient. The
third pulse, applied after a long ”diffusion period” ¢,,, where the diffusion
process can occut, turns the magnetization back into the transverse plane,
where it again evolves, figure £18 The phases of the second and third
pulse are chosen so that the overall turn angle is again 7. Thus, after the
third pulse, the magnetization starts to refocus and forms an echo at time
T.

The stimulated echo experiment measures the echo height S(7,%,,),
which basically correlates the phase of a tagged nuclear spin gained by
dephasing during the interval of length 7 before the diffusion period ¢,,
with its phase returned by its rephasing during the interval of the same

length 7 (figure E.15).
Due to T5-relaxation in the dephasing and rephasing periods and 77-
relaxation in the storage period, the measured echo height S(, ¢,,,) is given
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by [107]:
S(T,ty) = Soe*'YQQQTQD(thr%T)e*%e*% (4.33)
B, B, B,
T tm T

A

S

Figure 4.16: Evolution of the magnetization during the stimulated echo in
a static field gradient experiments.
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Chapter 5

Measurements and Analysis

In the present chapter, the experimental and theoretical results of the fluo-
rine dynamics studies of barium fluoride are given. As already mentioned,
three different NMR-methods were used to study mobility of fluorine ions.
The first one, Static Field Gradient NMR, investigated the ion movement
on the macroscopic scale, while the two others, lineshape analysis and
field cycling relaxometry observe on the microscopic scale.

5.1 Diffusion Measurements

Static Field Gradient (SFG) NMR is a well-established method for mea-
suring self-diffusion. Until now no systematic temperature-dependent
measurements of the diffusion coefficient in BaF,-system have been per-
formed. It was possible to learn more about the influence of the tempera-
ture treatment on “fresh samples”, identify the change of the dynamic for
different concentration of the La®** impurities and to calculate the activa-
tion energies.

The experiments have been carried out in a specially designed magnet
(chapter 4) at two gradient values, 40 T/m and 180 T/m (*°F resonance
frequency was 80 MHz), using a home-built high-temperature probe head
(section 4.2.1, figure LI0). Both Hahn [104] and stimulated-echo pulse
sequences [105], as was mentioned in chapter 4, have been used for esti-
mating the diffusion coefficient in the temperature range from 300K up to
1200K.

Measured data were analyzed by fitting them using two functions pre-
sented in chapter 4 (equationsE.32land .33)) and the Levenberg-Marquardt
algorithm. Two parameters T, and D were kept the same for all data, mix-
ing time t,, for Hahn echo was equal zero and for Stimulated echo t,, > 0.
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An example of the measurements and fitted curves is shown in figure 5.1l

®  Hahn Echo
° S.Echo/tm:20ms

A SEcho/ tm=130ms

Figure 5.1: Example of the 'YF-diffusion measurements in Ba;_,La,Fa.,,
where x = 0.001 at 800K. Sample was oriented parallel to the main mag-
netic field.

5.1.1 Aging Effect

All samples were prepared in the same way, by sealing in quartz tubes
under vacuum (chapter 4). No pre-measurements were performed. This is
a very important point, since it is known that treating fluorides, especially
LaF;, at high-temperature can influence the dynamics of the F~ - ions [8].

This phenomenon has also been found in the BaF;-system perform-
ing the T; and diffusion measurements. In the measured samples high
temperatures caused a change of the dynamics as expected. Figure
shows an example of the diffusion coefficient for the same sample heated
to 1100K for the first time, cooled down and heated once again to 1050K.
This "aging effect” may be attributed to structural changes after the heat-
ing. During the high temperature treatment, thermally activated defects
are created and distributed over various sites in the sample where they
stay during cooling.
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Figure 5.2: 'F Diffusion measurements in Ba; _,La,F,,., where x=0.001 in
the temperature range from 300K to 1100K. Sample was oriented parallel
to main magnetic field.

To obtain identical dynamic conditions for further investigation, all
samples have been deliberately aged (heated to 1200K and cool down to
300K ten times).

5.1.2 Influence of Trivalent Impurities

Another objective of this work was the investigation of the change of dif-
fusion coefficients and activation energy in a set of samples with different
concentrations of trivalent impurities (Ba;_,La,Fs,,). Figures and 5.4
show semi-logarithmic plots of the dependence of D on inverse tempera-
ture for different dopant concentrations.

At higher concentration (Ba;_,La,F,;,, where x = 0.03, 0.1), the data
can be divided (figure B4) into two distinct temperature regions having
different slops with two different activation energies: region I appears be-
tween 1.3-1.0 x10~% K~! with the activation energy of about 0.85 + 0.1 eV;
region I appears in the range from 1.82 to 1.4 x10~3 K~! with the activa-
tion energy of about 0.35 & 0.05 eV.

For BagggLapo1Fa01 (figure B3) only one region seems to exist ((1.3-
1.0)x107* K~'; region I). This region is also present for other lightly doped
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Figure 5.3: '°F Diffusion measurements in Ba;_,La,Fs,,, where x = 0.01 in
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the temperature range from 650K to 1000K.

Figure 5.4: '°F Diffusion measurements in Ba; ,La,F,,,, where x = 0.03 in

the temperature range from 550K to 1100K.
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5.1 Diffusion Measurements

samples (x = 0, 0.0005, 0.001). The slopes are the same for these samples,
corresponding to an activation energy of about 0.85 + 0.1 eV.

5.1.3 Discussion

In the SFG experiments, diffusion coefficients for different concentrations
have been examined. Figure B.5shows the final results. Two regions can be
observed: the high temperature intrinsic region and the extrinsic region.

The first one is present in all samples and starts at different tempera-

10° o Ber,
*  BaF,+0.05% LaF,
a | A BaF+0.1%LaF,
104 = ¢ BaF,+1% LaF,
3 N BaF,+3% LaF,
R i ® [ ] BaF,+10% LaF,
N{n 10 ‘ g ¢ n -
g 1 3 4 |
= 1q12] L 4 ]
A 103 ? . .
1 A
10" i, iy
] ¢ A
<4 1 l
10™ . ——

0.8 ' 1.0 ' 1f2 ' 1f4 ' 1.6 1.8
1000/T [K']

Figure 5.5: YF Diffusion measurements in Ba;_,La,F,,,, where x = 0,
0.0005, 0.001, 0.01, 0.03, 0.1.

tures for different concentrations it shifts to higher temperatures with in-
creasing concentration. The dynamical processes in this region are mainly
dominated by the creation of new defects. The corresponding activation
energy, very similar to that obtained by Wapenaar in ionic conductivity
measurements [108], and Ailion in NMR T;-measurements [20], describes
both, the creation and the movement of already existing defects.

For higher La** concentrations, as in (figure 5.4} a second region II (ex-
trinsic region) appears between (1.82-1.4)x107% K~!. The slopes of the
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Figure 5.6: Correlation times calculated from temperature-dependent dif-
fusion measurements.

plotted data are less steep than those in the intrinsic region, and the ac-
tivation energy is about 0.35 & 0.05 eV. The second region (II) appears be-
tween (1.82-1.4)x10~? K~! and can be characterized as an extrinsic region.
The corresponding activation energy is smaller compared to the intrinsic
region, and the absolute value of the diffusion coefficient is dependent
on the concentration of the admixture (Ba;_,La,Fs,,, where x = 0.03, 0.1).
Region II is associated with motion of already existing defects. Ailion et
al. [20] presented an explanation based on comparison of the diffusion
data with relaxation. The motion of fluorine ions bound to the La®*" - im-
purities is “partially dissociated”. This means that the ions may jump to a
more remote, but still bound site relative to La3™.

The correlation times were also calculated according to the isotropic
Random Walk model for free-diffusion, (r?) = 6D, with r equal 3.1 A
(figure 5.6 section 2.4.2).
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5.2 Lineshape Analysis

The second method used in this work was NMR lineshape analysis, for
which experimental results are presented for the series of Ba;_,La,Fs,,,
with x = 0.0005, 0.001, 0.01, 0.03, 0.1. It was possible to learn more about
the mobility of fluorine ions on a local scale (nearest neighbor), as well
as about the influence of trivalent impurities on lineshapes. A series of
spectra measured at different temperatures and dopant concentrations is
shown below. Analyzing the ”stack plots” (figure B to B17), it is easy
to recognize that the line becomes narrow at certain temperatures for the
respective concentration of admixtures. For example in case of pure BaF,,
narrowing occurs at 700K, whereas for Bag gLag 1Fs 1, this happens already
at ~450K. Also the difference between the shape of the spectrum of pure

ﬂ 900K

=————— K
ﬂ
ﬂ
T T — T T T T T T T T T T T 303K
20 -15 <10 -5 0 5 10 15 20 25
v [kHz]

Figure 5.7: YF-Lineshape measurements of pure BaF,. Sample was ori-
ented parallel to main magnetic field Bj.

BaF, and one with high-concentration, i.e. BaggLagF1, (figure B.Z and
B.I7) can be easily noticed. The next section provides a detailed discussion
about these types of effects.
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20 -15 -10 5 0 5 10 15 20
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Figure 5.8: 'YF-Lineshape measurements of Ba; ,La,Fs;,, where x =
0.0005. Sample was oriented parallel to main magnetic field B.

Figure 5.9: 'YF-Lineshape measurements of Ba; ,La,Fs;,, where x =
0.0005. Flat representation of the spectra in the temperature range of 303K-
600K.
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Figure 5.10: '"F-Lineshape measurements of Ba;_,La,F»,,, where x =
0.001. Sample was oriented parallel to the main magnetic field By.
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Figure 5.11: '"YF-Lineshape measurements of Ba;_,La,F»,,, where x =
0.001. Flat representation of the spectra in the temperature range of 303K-
600K.
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Figure 5.12: "F-Lineshape measurements of Ba; _,La,Fs,,, where x =0.01.
Sample was oriented parallel to the main magnetic field B,.
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Figure 5.13: '"F-Lineshape measurements of Ba;_,La,F»,,, where x =

0.01.Flat representation of the spectra in the temperature range of 303K-
600K.
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Figure 5.14: 'F-Lineshape measurements of Ba;_,La,Fs,,, where x = 0.03.
Sample was oriented parallel to the main magnetic field By.
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Figure 5.15: 'F-Lineshape measurements of Ba;_,La,Fs.,, where x = 0.03.
Flat representation of the spectra in the temperature range of 303K-600K.
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Figure 5.16: F-Lineshape measurements of Ba;_,La,Fs,,, where x = 0.1.
Sample was oriented parallel to the main magnetic field By.
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Figure 5.17: F-Lineshape measurements of Ba;_,La,F>,,, where x = 0.1.
Flat representation of the spectra in the temperature range of 303K-600K.
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5.2.1 Influence of Doping

The rich experimental data set presented above reflects various aspects
of fluorine spin dynamics. As already mentioned, the difference between
the pure system and the doped one can clearly be seen at room temper-
ature. Due to the substitution of Ba®* by La%t, which does not change
the cubic structure up to the concentration x » 0.5, (figure chapter
2, section 2.3.1.) interstitial fluorine ions were introduced into the lattice.
Those charge compensating ions produce a second subsystem which influ-
ences the fluorine dynamics and the shape of the spectrum visible in figure
as a second relatively narrow line “on top” of the broad line. To ex-

-40 -20 0 20 40 -60 -40 20 0 20 40
v [kHz] v [kHz]

Figure 5.18: '""F-static lineshape  Figure 5.19: F-static lineshape
measurements of BaF, at 300K. measurements of Bag gLag 1Fs 1, at
300K.

tract exact information about the position of the second line, and thus the
chemical shift, the magic angle spinning method [109] and multiple-pulse
sequences have been tested. The second technique was unfortunately not
very successful, since it requires “single point acquisition” technology and
reliable software, but the MAS data were good enough to determine the
position of the “interstitial” line. More details about these measurements
are presented in the following sections.
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5.2.2 MAS Measurements

The MAS data were obtained by spinning a Ba gLag 1F> 1-powder sample
at different frequencies, up to 24kHz, where the second fluorine subsystem
could clearly be identified, figure The two lines can be assigned to the
different crystallographic sublattices, according to the 2:2:2-model (chap-
ter 2, figure Z.T3): F; denotes the “original” positions of F~-ions, whereas
F, describes the interstitial positions of fluorine ions (charge compensat-
ing ions). In order to get more valuable information about the dynamics

Ba Ia F

09 0.1 21

[CV .
spinning

4 kHz
8 kHz
10 kHz
16 kHz
T T T T T T T T 1 24 kHZ
40 30 20 10 0 10 20 30 40
v [kHz]

Figure 5.20: YF-MAS spectra of Ba;_,La,Fs.,-powder sample, where x =

0.1. Sample was measured in §0= 8.4T, at a temperature 300K, and spun
at different spinning frequencies, shown on the right.

inside the two subsystems, detailed theoretical analysis was needed. The
next paragraph describes the theoretical background.

Figure represents a complex spectrum where a clear identification
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T T T T T

-15 | -10 -5 0 | 5
v [kHZ]

Figure 5.21: F-MAS spectrum of a Ba;_,La,F,,,-powder sample, where
x = 0.1. Sample was measured in By= 8.4T and spun at 24 kHz.

of fluorine motion inside one sublattice cannot be made without taking
into consideration the second subsystem. It is nevertheless very probable
that the narrow component on the top of the static spectrum in figure
can be attributed to the F, sublattice. With increasing temperature the
two lines, not really well-separated even at room temperature, overlap.
This effect indicates thermally activated exchange motion between the two
distinct sublattices.

5.2.3 Theoretical Analysis

On the background of the above presented experimental data and neutron
scattering measurements (chapter 2, section 2.4.1; at low temperatures and
high concentrations of LaFs), the two fluorine sublattices were distinguish-
able. Fluorine ions belonging to each of these sublattices move among
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equivalent sites within the same sublattice and also jump to nonequiva-
lent sites of the other sublattice. Fluorine spins are coupled to neighboring
fluorine as well as lanthanum spins by dipole-dipole interactions in the
case of doped samples (Ba;_,La,Fs;,, x = 0.0005, 0.001, 0.01, 0.03, 0.1).
The mutual dipole-dipole couplings affected by temperature-dependent
jump dynamics of the fluorine ions determine the shape of the detected
NMR spectra.

One-system model In order to calculate the NMR spectrum for the pure
BaF, sample, which consists only of the F; lattice (no admixture of LaF;
and no interstitial ions), one reference spin /,.; needs to be chosen (figure
B27). Its surroundings, to which it is coupled by dipole-dipole interac-
tions, are formed by N fluorine spins. The total Hamiltonian A, for the
considered ensemble of spins contains the Zeeman and the dipolar cou-
plings for the fluorine spins:

Ni1+1

,%21 = Z wF1<Ii1>Z + %DD (51)
i=1

The first term corresponds to the Zeeman coupling of the fluorine spins.
The second is the dipole-dipole Hamiltonian .77, which contains cou-
plings between the reference spin /,.; and the environment (env):

. 2 3cos%0 —1
Ho ’YF Cos Liefleny,L
Hop (Lo, Lony) = — :
DD( f ) 47 T? ( 2 )

7'eernv

[ZITefzIenvz -

1 (5.2)
5 (Iref+Ienv— + Iref—Ienv+):|

The angle 0y, ,1,,,.1 describes the orientation of the I,.-I.,, dipole-dipole
axis with respect to the laboratory frame, while r;_ ;. is the inter-spin

distance. The Hamiltonian .7 determines the energy levels of the selected
spin system. To obtain the required eigenvalues, the diagonalization of the

A, in the Zeeman basis |n)=|m?, . .., mzlvll .1) isneeded. The number of the

spins included in the calculations determines the number of energy levels
for the system: (21;+1)% 1 (N{=8), where I 1:%. Single-quantum transitions
of the reference fluorine spin /..y, being a part of the coupled spin system,
give rise to the observed spectrum. The relevant transition frequencies in-
clude the main resonance frequency wp,, affected by the dipole-dipole cou-
plings, and can be selected from all transition frequencies w. =E! — E},

ool

between the energy levels, E}, of the considered spin system. For the sake
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Figure 5.22: Lineshape model for pure and small concentration of x,
Bal_wLangﬂ.

of simplicity, the particular single-quantum coherence w,,,, is defined as

follows: w/, and the number of relevant single-quantum transitions of the
spin I1 as Ng,, thus =1, ..., Ng,. The effects of the jump of the fluorine
spin I; from one site to another can be treated as a change of its frequency
w;, caused by different quantum configurations of the new surroundings.
Taking into account the notation mentioned above an equation of motion
for the density operator o (t) (chapter 3), describing the selected spin sys-
tem can be written as:

do)(t) .

—h— = —iw,0,(h) + Z I,0(t)
= (—iwydy. +T),) ob(t) (5.3)
= Auol(t)
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The summation is restricted to single-quantum coherences relevant for the
F} fluorine spectrum.

The time domain NMR signal for a spin / is given by the trace of the
product of an appropriate density operator o(t) and the operator /_. Thus,
the F, lineshape Sp, (w) can be obtained as a Fourier transform of the cor-
responding time domain signal from the following expression [20]:

Sy (w Z Tr {01 Il } e Wt
(5.4)
=W(A—iwl)” OINZ —iwl)” }W

The vector W contains the initial density matrix elements W, =0, (0), pro-
portional to probabilities of the corresponding coherence’s w,. Because the
probabilities are equal they are omitted in the last part of equation 54 To
complete the expression for the F, fluorine spectrum, the transition rates
I',, need to be defined. The jump rate of the fluorine spin 7' from one
position to another is defined as the inverse correlation time 7, '

Performing such a jump, the spin I' changes its transition frequency
from a value w;, (experienced in the initial position) to one of the possible
values w) (v=1,..., N§,) associated with the new site. A special case is
when w)=w,: the spin does not notice any difference.

According to this theoretical model, the spectra for pure BaF, crystals
and low concentrations of LaF; crystals were analyzed.

Two subsystem model For higher concentrations of admixtures a mod-
ification of this model has been used. Because there is a second sublattice
made of interstitial F~-anions (chapter 2, section 2.4.1), there should also
be an analogy of it in the theoretical analysis. This can easily be adapted
by defining the second sublattice F; as was done for F,, taking into consid-
eration the appropriate surroundings of a reference spin I, (representing
the second sublattice Fs).

Assuming that its environment consists of N, fluorine spins from the
sublattice F,, and N; spins from the sublattice F;, the calculation of pos-
sible frequencies w, for single-quantum transitions of the spin I, is intro-
duced. Because the time for calculations rises rapidly with the number of
included spins, a compromise was required. The number of spins was set
to a value avoiding missing significant physical effects while keeping the
computation time within acceptable limits.
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5.2.4 Discussion

The low-concentration samples were analyzed with the model containing
only the sublattice F;. Figures 5.23] and show the theoretical calcula-
tion compared with experimental results. The agreement is very good in

Figure 5.23: F-Lineshape measurements (points) and analysis (line) of
BaF, at 675K.

the temperature range 600K-750K, apart from small deviations which can
be observed in the “wings” of the spectrum. This feature is caused by the
data treatment. As already mentioned in section 4.1.1, “missing points”
at the beginning of the FID were extrapolated using a linear prediction
algorithm which predicts the points with considerable accuracy.

In the high concentrations interplay between two subsystems led to
a progressing overlap of the F; and F, lines which already could not be
resolved at room temperature. Therefore, the spectra take the form of one
a single line which is initially very asymmetrical. A further increase of the
temperature reduced the asymmetry, finally reaching the resolution limit
of the spectrometer at 500K for the BaygLay ;Fs1-sample.

The resulting correlation times 7 collected in figure for small con-
centrations of the admixtures show Arrhenius behavior.

At relatively low temperatures (300K-400K), for both the high and low
concentrations, the lineshapes were very broad, up to 30 kHz. The number
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Figure 5.24: F-Lineshape measurements (points) and analysis (line) of
Ba;_,La,F,,,, where x = 0.0005, at 700K.
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Figure 5.25: F correlation times calculated from temperature-dependent
lineshape measurements in the temperature range 600K-750K.
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of the spins used in the analysis was insufficient to fit the low temperature
spectra. In addition, no valuable information can be gained from correla-
tion times calculated for the high concentrations because of the numerical
error, which sometimes reached as much as 70%.

5.3 Relaxation Measurements

One of the most important aspects of this work was the investigation of the
spin-lattice relaxation times 77 in BaF; as a function of the evolution field
By (chapter 4, [95]), temperature and concentration of La*t. Two different
models has been applied to analyzed the data: model of Bloembergen,
Purcell, Pound (BPP) and model of two different sublattices. Information
gained from that could be compare with two other methods.

Typical relaxation rate dispersions are shown in the figures below. The
samples were oriented with their (100)-plane parallel to By. The data for
low concentration samples look almost like a single exponential decay, but
detailed analysis below will show that the situation is more complicated.
As far as high concentrations are concerned, more than one dynamical pro-
cess could be identified in the relaxation profiles. Moreover, starting from
the BagggLag o1 F2.01 sample, some broad structure appears at frequencies
around ~10 MHz (figure 5.37]).

As a starting point, the analysis has been performed for pure and low
concentration samples since the simple picture of the dispersion data in-
dicated one relaxation process. The next sections which follow show the
procedures which had been followed in order to analyze data presented
below
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Figure 5.26: Frequency-dependent '“F-relaxation measurements in pure
BaF; in the temperature range from 300K to 1000K. Sample was oriented
parallel to main magnetic field.
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Figure 5.27: Frequency-dependent '*F-relaxation measurements in
Ba;_,La,Fs.,, where x = 0.0005 in the temperature range from 300K to
1000K. Sample was oriented parallel to main magnetic field.

92



5.3 Relaxation Measurements

500K
600K
700K
800K

> 8t @

T [s"]

v [Hz]

Figure 5.28: Frequency-dependent '?F-relaxation measurements in
Ba,_,La,Fs.,, where x = 0.001 in the temperature range from 300K to
1000K. Sample was oriented parallel to main magnetic field.
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Figure 5.29: Frequency-dependent 'F-relaxation measurements in
Ba,_,La,Fs;,, where x = 0.01 in the temperature range from 300K to
1000K. Sample was oriented parallel to main magnetic field.
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Figure 5.30: Frequency-dependent '*F-relaxation measurements in
Ba,_,La,Fs,,, where x = 0.03 in the temperature range from 300K to
1000K. Sample was oriented parallel to main magnetic field.
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Figure 5.31: Frequency-dependent '*F-relaxation measurements in
Ba;_,La,Fs.,, where x = 0.1 in the temperature range from 300K to 1000K.
Sample was oriented parallel to main magnetic field.
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5.3.1 BPP Model

The simplest approach for diffusion in ordered systems is the model of
Bloembergen, Purcell, and Pound, BPP-model [78], which assumes an ex-
ponential correlation function proportional to exp(—*), where correlation
time 7 is the mean amount of time for one spin of a pair of interacting spins
to jump. The corresponding spectral density function is then a Lorentzian
function of the frequency. In the BPP-model spectral densities are con-
nected with relaxation rates, T; in the following way:

—=2> (@ﬁ) I(1 + 1) [J1(wo) + 4J5(2wo)] (5.5)

It is also assumed that 7 depends on the temperature T according to the
Arrhenius form 7=ryezp(%), where E is the activation energy for the dif-
fusive jump of a spin. The BPP model describes a situation for which the

10°3<

10°4 N - = -1=10"
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-1
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10" 4 ~

10° T T T

Figure 5.32: Frequency-dependent relaxation rates according to the BPP
model for different 7.

correlation between a pair of the same spins (/) is completely destroyed. In
other words, the motion of ions is uncorrelated. Figure shows some
theoretical curves calculated with the aid of the BPP-model for different
correlation times. Using this “uncorrelated motion” model, the collected
data were analyzed. In most cases, the model failed for concentrations
of the admixture higher than x=0.01. In the case of low concentration
samples, it was found that the agreement between experiment and the-
ory is better for the temperature range 500K-800K than in the case of non-
exponential correlation functions where the disagreement occurs in the
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Figure  5.33: Frequency-
dependent 'YF-relaxation mea-
surements  plus  theoretical
analysis in BaFs, at 350K.
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Figure  5.35: Frequency-
dependent 'YF-relaxation mea-
surements  plus  theoretical
analysis in BaF,, at 650K.

10 10° 10° 10

Figure  5.34: Frequency-
dependent '“F-relaxation mea-
surements  plus  theoretical
analysis in BaF,, at 500K.
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Figure  5.36: Frequency-

dependent 'YF-relaxation mea-
surements  plus  theoretical
analysis in BaFs,, at 700K.
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temperature range 300-900K. Some examples are shown in figures B33
Three temperature ranges can be identified:
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Figure  5.37: Frequency-  Figure  5.38: Frequency-

dependent !'YF-relaxation mea-
surements  plus  theoretical
analysis in BaF,, at 950K.

dependent !'YF-relaxation mea-
surements  plus  theoretical
analysis in BaFs,, at 1000K.

e Starting from room temperature up to around 500K, disagreement
occurs in the frequency range 200kHz-30MHz (figure and £.34).
The reason relies on assumptions on which the relaxation theory is
based. One of them, mentioned in chapter 3, says that the dipole-
dipole Hamiltonian multiplied by the correlation time 7 must be
smaller than one (#,r > 1). This is called the Redfield limit and
is not fulfilled in this temperature range.

e The second temperature range, 500K - 800K, is in the Redfield limit
[82], and the used mono-exponential function describes the experi-
mental data very well (figure and £.44), which means that prob-
ably in this temperature range the motion is uncorrelated.

e Above 800K, discrepancies become more and more visible as the
temperature increases (figure £.37 and B.38). One possible explana-
tion concerns the phenomenological nature of the single-exponential
correlation function, which in the case of translation diffusion is equal
to the assumption that the dipole-dipole interaction between two
spins exists only for the time 7 and afterwards disappears. In other
words, one spin jumps infinitely far away [21] but this is not the
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case in the reality. The dipole-dipole interaction is weaker if the spin
jumps further away but it still exists. This contribution, which is not
considered in the BPP model, can produced similar deviations, as
shown in the figure

All obtained correlation times, along with the regions in which the re-
laxation theory failed (larger 7, highlighted region, top) and where the
change of the dynamics (higher temperatures, highlighted region, bottom)
occurs, are shown in figure

__

0 15 2.0 25 3.0
1000/T [K]

Figure 5.39: Correlation times calculated from FC NMR using the BPP-
model for the BaF; sample (highlighted regions, see text).
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5.3.2 Non-Exponential Correlation Function

The first consideration of translation diffusion described as a random walk
in an isotropic diffusion model has been done be Torrey [23]. Twenty years
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<
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Figure 5.40: Non-exponential correlation function and relaxation profiles
at 700K, BaF,-sample.

later Wolf [24] and Sholl [25,26] applied this model for the cubic crystal
structure in which the non-exponential correlation function [27, 28] were
derived:

2T — C—m
ZEZSg)Re(u—zy)

2T — S(p) zk: <y>2j
B a6 (Y " o —2] ) u

y=wT, k is the integer part of 7, a is the lattice parameter

(5.6)

where u=57 0) ,

and the dimensionless lattice sums S®)™ are:

S — a6d12)7_m—1 Z Y2P (Qa) YVQ’;’ (Qﬁ) F,, (Oé, ﬁ) (5.7)

m 3
a?IB

3
ra ’T’B
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Equation[B.flis an exact expression for the spectral density functions in the

monovacancy limit where the lattice sums S are independent of y=wr.
This result is similar to the one obtained by Torrey, e.g.,

N[> 2 wudu

Jw) = — /0 [J (u)} oy (5.8)
where D is the diffusion coefficient, d the minimal distance between the
spins, N density of spins, and J2 Bessel function rank 3. All these mod-
els work with some assumptions for high and low frequencies. In three
dimensions, the dependency of all models on low frequencies can be writ-
ten:

JUw) = JY0) — AVw+ ..., (5.9)

where A is a constant parameter depending on the model.
This behavior deviates from the BBP-Model, where J?(w) = J9(0)—w?+. . ..
The reason is the specific form of the diffusion propagator. Mostly because
of that, the non-exponential spectral density functions for cubic structure,
proposed by Sholl [27,28], have been applied and tested in combination
with the experimental data.

It turned out that they do not describe the experiment very precisely.
Figures B.40shows the deviation between theoretical non-exponential cor-
relation functions and experimental results. One reason for this disagree-
ment could be the monovacancy limit [27,28], in which the relative motion
of a pair of spins is controlled by the motion of a low concentration of va-
cancies [29].

5.3.3 Model of Two Different Sublattices

As a next step, an “expansion” of the BPP model, the model with two
different species of spins derived by Solomon and Bloembergen [83], was
applied to the high concentration samples. Based on this model, all re-
laxation data for all crystals starting from Baj g9Lag 1F2.01 have been ana-
lyzed. It explicitly takes into account the different fluorine sublattices. In
the complete analysis, no lanthanum spin system has been taken into ac-
count, which manifests itself as a small deviation between theoretical and
experimental data, in the frequency range from 6 MHz to 12 MHz (figure
B.AD.

This model consists of two coupled differential equations describing
the evolution of the magnetization belonging to the F; and the F, sublattice
[110]: ;

aMFl = anMp, + a1aMp, (5.10)
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d
EMFQ = CLQQMF2 -+ aglMpl (511)

The coefficients depend on several spectral densities of dipolar interac-
tions as well as the exchange lifetime 7, [111]:

3 1
= K5 { [ r) + 1720r)] + 5[99 ) + 308 o) + 038 )]}
1 Ny
T12 Nl
(5.12)
N1 1
an = K55 672 (wp) — S (wr)| + - (5.13)

as well as two others coefficients, ayy and as;.

The solution to these equations yields two jump rate constants, from
which only the smaller one is of importance for the presented measure-
ments. The corresponding spectral densities (chapter 3) contained in the
coefficients a;s with 1,5 € {1,2} are given under the assumption of a
mono-exponentially decaying correlation function by:

2T
() 2 1S 514
IS (ZJ‘ 1+w2 (' )

with 37, )y |F?|2 being the dipolar coupling strength.
The time constants 7;¢ are derived from the jump rates of both interac-

tion partners:

111
—=—+—,1,5€{1,2} (5.15)
T T8

718
and in this work they will be denoted as correlation times: 71, 72, and 712
which describe the jump rates within the F;-sublattice, the Fy-sublattice
and the exchange process between them, respectively.

Figures 5.47] and show a frequency dispersion at different
temperatures over three decades and a relatively complex behavior in-
volving several contributions to 7} can be observed. With increasing tem-
perature some characteristic changes occur and can be classified as follow-
ing:

e From 350K to 600K, the relaxation rate decreases with increasing fre-
quency up to 40 MHz without showing a constant level at low fre-
quency, as expected for the slow motional limit w7 >1. The drop in
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102

T, ! shifts to higher frequencies with increasing temperature, thus
reflecting a thermally activated process which can be related to mo-
tion.

At temperatures below 500K, there is an additional substructure in
the T’ -dispersion between 4 MHz-20 MHz due to polarization trans-
fer through the **La-quadrupolar spin (chapter 3, section 3.6.2). This
is perfectly reproducible and can contain valuable information about
the La®*" local environment. Since this effect was not the main topic
of this investigation, it has not been taken into account for further
analysis. In an intermediate temperature regime this contribution
disappears because of the faster motion of '*F-ions, which are dipole-
dipole coupled to La®*". Nevertheless, a careful measurement of the
quadrupolar dips may give more insight into the local environment
of the lanthanum ions and thus possibly also into the defect structure
of BaF, [87-91].

Above 700K a clear plateau can be seen at low-frequencies, reflect-
ing that the correlation times for all processes are shorter than 10~ %.
With the temperature increasing toward 1000K, all motional pro-
cesses are in the fast limit wr <1.
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Figure 5.41: 19F-Relaxation
measurements plus analysis in
Bao,gLag‘ng,l at 350K.
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Figure 5.43: YF-Relaxation
measurements plus analysis in
Bao_gLa0_1F2_1 at 700K.
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Figure 5.42: YF-Relaxation
measurements plus analysis in
Bao‘gLao.le‘l at 400K.
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Figure 5.44: '9F-Relaxation mea-
surements plus theoretical in
Bao_gLao.ng_l at 900K.

103



Measurements and Analysis

5.3.4 Discussion

The two models presented above, the BPP and the model of two different
sublattices, describe relatively well, with some exceptions, the fluorine re-
laxation data for low and high concentration samples, respectively. They
take into account the BaF; crystal structure and its defects. The results can
be seen in figures and The relaxation behavior of Ba,_,La,Fo_,,

10 3
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Figure 5.45: Correlation times, 7y calculated from FC NMR using the BPP-
model and the model of two different sublattices for Ba;_,La,F;5 ., where
x =0, 0.0005, 0.001, 0.01, 0.03, 0.1.

where x = 0.001, 0.003, 0.1, can be described satisfactorily by motion within
the F; (correlation times 7, figure B40) and F, (correlation times 7, fig-
ure £.46) sublattice, except the exchange between them, where correlation
times were in the order of 10 seconds which is rather doubtful. In general,
the dynamic processes are at least one order of magnitude faster within
the F, than within the F,, in the temperature range of 300K - 700K (figure
B.45). At higher temperatures, all correlation times are on the same slope,
having the same activation energy, 0.3 eV. Furthermore, it is clear that the
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Figure 5.46: Correlation times, 7, calculated from FC NMR using the
model of two different sublattices for Ba; ,La,Fs,,, where x = 0.01, 0.03,
0.1.

motion for the highly doped samples is faster than for crystals with only
low doping.

As was mentioned before at temperatures below 500K and in the fre-
quency range of 4MHz-20MHz (for 'H frequency), an additional relax-
ation process occurs. It is known as a polarization transfer through the
1%9La-quadrupolar spin system and was also found in LaF; [8]. A detailed
analysis of this phenomenon was not the aim of this study but it should be
pointed out that the static quadrupole interaction could have influenced
the results for the corresponding correlation times.
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5.4 Results and Discussion

This section summarizes all information about the fluorine dynamics in
Ba,_,La,F,,, obtained by different NMR methods: magic-angle spinning,
lineshape analysis, field cycling relaxometry and static field gradient mea-
surements.

All measurements were intended to explore the macro- and micro-scale
of the dynamical processes and to give some insight in the influence of
La** admixtures on the BaF,-system.

Based on the magic angle spinning and X-ray structural results two
different theoretical models have been adopted in order to obtain the cor-
relation times from the relaxation measurement and the lineshape analysis
data. In the case of the static field gradient measurements the correlation
times were calculated from the isotropic Random Walk model for free-
diffusion.

It should also be mentioned that the lineshape analysis data have shown
strong changes of the lineshape with rising concentration of admixtures.
Also, analysis of these data for low concentrations of La®** was possible
only in the narrow temperature range 600K-750K. The reason for was in-
sufficient number of spins used in calculations of the broad spectra (300K-
400K). With increasing concentration of La** this method reached the lim-
its of its applicability.

The comparison of all used methods can be done by plotting, on the
same graph, calculated correlation times for different temperatures and
concentrations of La®**. In general, this combination has allowed “look-
ing” at dynamical processes over a wide time (eight decades) and temper-
ature window. Results can be seen in figures

The data for pure and low concentration (x = 0.0005, 0.001) of the La*"
(figures 644549 measured with all techniques are on the same slope
which means that dynamics of fluorine ions can be described satisfac-
torily by motion within the F; sublattice. In the case of highly doped
Ba;_,La,Fs, samples (x = 0.01, 0.03, 0.1; figures BE.50H5.52) the dynamic
processes are at least one order of magnitude faster within the F; than
within the F;, in the temperature range: 300K - 700K. Furthermore, 7y cor-
relation times from field cycling measurements are in good accordance
with correlation times obtained from the static field gradient measure-
ments which means that the motion occurring within the F, sublattice is
responsible for the long range diffusion
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Figure 5.47: Correlation times calculated from three different NMR-
methods: FC NMR, Lineshape NMR, SFG NMR, for pure BaF,.
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Figure 5.49: Correlation times calculated from three different NMR-
methods: FC NMR, Lineshape NMR, SFG NMR, for Ba;_,La,Fs,, where
x = 0.001.
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Figure 5.52: Correlation times calculated from two different NMR-
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Chapter 6

Summary

In this work the dynamics of fluorine in solid-state electrolytes having
BaF;-structure was investigated using three different NMR-methods: field
cycling relaxometry, lineshape analysis, and static field gradient NMR. For
this purpose a pure BaF, crystal, as well as crystals doped with trivalent
impurities (LaFs), were studied as a function of temperature. The main
goal of this investigation was to utilize the structure information provided
by neutron scattering and MAS NMR data in order to study dynamic
properties on different time and length scales with the techniques men-
tioned above.

Investigations of macroscopic dynamical processes performed by dif-
fusion measurements reveal two different temperature regions, labeled I
and II, with different activation energies depending on the concentration
of LaF;. Region I, at high-temperature, contains thermally activated de-
fects. The dynamics in this region can be described by diffusion of both,
these activated and already existing defects. The low-temperature region
(IT), only appears at increasing admixture concentrations. It is most likely
dominated by the motions of already existing defects. Another important
result was observed during the high-temperature treatment of the pure
and lightly doped BaF, samples, which influenced the dynamics. This ag-
ing effect manifests itself as a small change of the diffusion coefficient and
can be explained as creation of new defects in the sample.

Information about the microscopic dynamic were obtained by the line-
shape analysis. Acquired data have shown strong changes of the lineshape
with rising concentration of admixtures. Using MAS NMR it was possible
to identify two lines in BaggLag1F2; having different chemical shift, and
to refer them to the modified crystal structure. On this basis a model for
the fluorine lineshape has been developed, taking into account three mo-
tional processes characterized by their correlation times. It includes jump
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diffusion of the fluorine ions among equivalent sites within two crystallo-
graphically distinct sublattices, and inter-lattice exchange processes. The
theoretical description has been based on a detailed treatment of fluorine-
fluorine dipole-dipole interactions relevant for the shape of the fluorine
spectra. Analysis of the lineshape data for low concentrations of admix-
tures revealed that motion occurs in the F, lattice, but with increasing con-
centration of La*" this method reaches the limits of its applicability. Thus,
it was of great interest to introduce a third technique, field cycling relax-
ometry.

By measuring frequency and temperature-dependent spin lattice relax-
ation times, it was possible to gain information about fluorine dynamics
on microscopic length scales. As was done in the case of the lineshape
analysis, two models were used to interpret the data, taking into account
the different fluorine subsystems. The differences between the approaches
consist of several modifications: on the one hand, a BPP-model for relax-
ation for pure and low concentration of La*" was incorporated; on the
other hand an ”extension” to the BPP theory was used, explicitly taking
into account the two different subsystems F; and F,. An attempt was
also made to analyze the data for pure BaF; and low admixture concentra-
tion samples with a non-exponential correlation function. It turned out, at
least in the temperature range of 500K-800K, that the uncorrelated motion
model (BBP) is more useful to describe the data. In the case of increas-
ing dopant concentration, two different regions could be observed for the
temperature-dependent correlation times. These results were in good ac-
cordance with measurements of the self diffusion coefficient. It should
also be mentioned that a second-order effect, the static quadrupole inter-
action, could have influenced the results for the corresponding correlation
times.

Finally, it is important to emphasize the experience gained during this
investigation by using different NMR methodologies. Good, fast ionic
conductors inevitably exhibit large numbers of structural defects, and many
dynamical processes, especially at elevated temperatures.

In the early days many different systems of known structures were
studied and reported in literature. In this work, a further extension of
these studies has been presented through the application of new technical
developments (FC NMR). Although the information provided by NMR on
the BaF,-system is limited, this study demonstrates the feasibility of elu-
cidating important features of this system by exploiting element specific
information concerning dynamics on different time and length scales, rel-
ative to a reference temperature or composition.
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Kapitel 7

Zusammenfassung

In dieser Arbeit wurde die Fluordynamik in Festelektrolyten der BaF,-
Struktur mittels dreier unterschiedlicher NMR-Methoden untersucht:
Field Cycling Relaxometrie, Linienformanalysen und Statische Feldgra-
dienten-NMR. Fur dieses Ziel wurden sowohl reines BaF, als auch mit den
dreiwertigen Fremdstoff La*" dotierte Kristalle, als Funktion der Tempe-
ratur studiert. Das Hauptziel dieser Untersuchung war die durch Neutro-
nenstreuung und MAS-NMR-Daten gewonnenen Strukturinformationen
zu nutzen, um das dynamische Verhalten auf unterschiedlichen Zeit- und
Langenskalen mittels oben genannter Techniken zu betrachten.

Aus den Diffussionsmessungen zum Studium makroskopischer Dy-
namik ergaben sich —in Abhaengigkeit vom Dotierungsgrad mit LaF;—
zwei Temperaturbereiche I und II mit unterschiedlichen Aktivierungsener-
gien. Die Diffusion mit grofierer Aktivierungsenergie wurde bei allen Pro-
ben im Bereich hoher Temperaturen beobachtet, dies ldsst auf das Vorhan-
densein thermisch aktivierter Defekte schlieflen. Die Dynamik kann hier
als Bewegung dieser aktivierten und bereits bestehender Defekte beschrie-
ben werden.

Der Bereich II (tiefe Temperaturen) tritt erst dann auf, wenn der Dotie-
rungsgrad erhoht wird. Die Dynamik wird héhstwahrscheinlich von der
Bewegung bereits bestehender Defekte dominiert. Eine weitere wichtige
Beobachtung wurde wahrend der Hochtemperatur-Behandlung der rei-
nen und schwach dotierten BaF,-Proben gemacht: Die hohen Tempera-
turen riefen Anderungen in der Dynamik hervor. Dieser Alterungseffekt
zeigt sich durch kleine Anderungen des Diffusionskoeffizienten und kann
dadurch erkldrt werden, dass bei erhohten Temperaturen neue Defekte er-
zeugt werden.

Die Linienform-Analyse erfasst mikroskopische Bewegung. Die zuge-
horigen Messdaten zeigen starke Anderungen der Linienform mit zuneh-
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mendem Dotierungsgrad. Durch die MAS NMR-Messungen war es mog-
lich, in BaggLagF2; zwei Linien mit unterschiedlicher chemischer Ver-
schiebung zu identifizieren und diese mit der modifizierten Kristallstruk-
tur zu korrelieren. Basierend auf dieser Grundlage wurde ein Modell fiir
die Fluor-Linienform entwickelt, das auf den drei durch ihre Korrelations-
zeiten charakterisierten Arten von Bewegungsprozessen beruht. Es bein-
haltet die Sprungdiffusion der Fluor-Ionen zwischen dquivalenten Git-
terpldatzen innerhalb der beiden kristallographischen Untergitter, sowie
Austauschprozesse zwischen den beiden Gittern. Die theoretische Aus-
wertung basiert auf einer detaillierten Betrachtung der Fluor-Fluor Dipol-
Dipol-Wechselwirkungen, die fiir die Linienform der Fluor-Spektren ver-
antwortlich sind. Analysen der Linienform-Messergebnisse fiir niedrige
Dotierungsgrade haben gezeigt, dass im F,-Gitter Bewegung auftritt. Al-
lerdings stoBt diese Methode mit zunehmender Konzentration von La**
an die Grenzen ihrer Anwendbarkeit, daher war es von groflem Interesse,
eine dritte Messmethode, ndmlich die Fieldcycling-Relaxometrie, einzube-
ziehen.

Durch die Messung frequenz- und temperaturabhingiger Spin-Gitter-
Relaxationszeiten war es moglich, die Fluor-Dynamik auf mikroskopischer
Skala aufzukldren. Analog zur Linienformanalyse wurden zur Interpre-
tation der Daten zwei Modelle herangezogen, die die unterschiedlichen
Fluor-Subsysteme in Betracht ziehen. Fiir reines BaF, und bei niedrigen
Konzentrationen von La*" wurde das BPP-Relaxationsmodell angewen-
det, bei hohen Konzentrationen empfiehlt sich hingegen eine Erweiterung
der BPP-Theorie, die die beiden Subsysteme F; und F, explizit bertick-
sichtigt. Diese Modelle unkorrellierter Bewegung zeigen insbesondere im
Temperaturbereich von 500K-800K eine sehr gute Ubereinstimmung mit
den Daten. Weiterhin wurde der Versuch unternommen, die Daten fiir rei-
nes BaF, und niedrige La*"-Dotierungsgrade anhand einer nichtexponen-
tiellen Korrelationsfunktion zu analysieren. Dieser Ansatz erwies sich im
gesamten Temperaturbereich als ungeeignet zur Beschreibung der Mess-
daten. Bei den nach der BPP-Theorie berrechneten Korrelationszeiten konn-
ten mit zunehmendem Dotierungsgrad zwei unterschiedliche Tempera-
turbereiche beobachtet werden. Dieses aus den Fieldcycling-Messungen
gewonnene Resultat zeigt eine gute Ubereinstimmung mit den Ergebnis-
sen zum Selbstdiffusionskoeffizienten. Weiterhin soll hier erwahnt wer-
den, dass ein Effekt zweiter Ordnung, die statische Quadrupol-Wechsel-
wirkung, die Werte der Fieldcycling-Korrelationszeiten nicht unerheblich
beeinflusst haben konnte.

In den Anfangen der NMR-Untersuchungen wurden verschiedene Sys-
teme bekannter Strukturen untersucht und die Resultate in der Literatur
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festgehalten. In dieser Arbeit werden solche Studien durch das Einbezie-
hen neuer technischer Entwicklungen (Fieldcycling-NMR) erweitert. Ob-
wohl der aus NMR-Messungen erhiltliche Informationsgehalt tiber das
BaF,-System begrenzt ist, hat diese Studie gezeigt, dass die Aufkldrung
wichtiger Merkmale dieses Systems durch die Nutzung elementspezifi-
scher Informationen beziiglich der Dynamik auf unterschiedlichen Zeit-
und Langenskalen mdoglich wird.
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