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Abstract

This thesis investigates the use of wearable sensors to recognize human activity. The
activity of the user is one example of context information — others include the user’s lo-
cation or the state of his environment — which can help computer applications to adapt to
the user depending on the situation. In this thesis we use wearable sensors — mainly ac-
celerometers — to record, model and recognize human activities. Using wearable sensors
allows continuous recording of activities across different locations and independent from
external infrastructure. There are many possible applications for activity recognition with
wearable sensors, for instance in the areas of healthcare, elderly care, personal fitness,
entertainment, or performing arts.

In this thesis we focus on two particular research challenges in activity recognition,
namely the need for less supervision, and the recognition of high-level activities. We
make several contributions towards addressing these challenges. Our first contribution
is an analysis of features for activity recognition. Using a data set of activities such as
walking, standing, sitting, or hopping, we analyze the performance of commonly used
features and window lengths over which the features are computed. Our results indicate
that different features perform well for different activities, and that in order to achieve
best recognition performance, features and window lengths should be chosen specific for
each activity.

In order to reduce the need for labeled training data, we propose an unsupervised
algorithm which can discover structure in unlabeled recordings of activities. The ap-
proach identifies correlated subsets in feature space, and represents these subsets with
low-dimensional models. We show that the discovered subsets often correspond to dis-
tinct activities, and that the resulting models can be used for recognition of activities in
unknown data. In a separate study, we show that the approach can be effectively deployed
in a semi-supervised learning framework. More specifically, we combine the approach
with a discriminant classifier, and show that this scheme allows high recognition rates
even when using only a small amount of labeled training data.

Recognition of higher-level activities such as shopping, doing housework, or commut-
ing 1s challenging, as these activities are composed of changing sub-activities and vary
strongly across individuals. We present one study in which we recorded 10h of three dif-
ferent high-level activities, investigating to which extent methods for low-level activities
can be scaled to the recognition of high-level activities. Our results indicate that for set-
tings as ours, traditional supervised approaches in combination with data from wearable
accelerometers can achieve recognition rates of more than 90%.

While unsupervised techniques are desirable for short-term activities, they become
crucial for long-term activities, for which annotation is often impractical or impossible.
To this end we propose an unsupervised approach based on topic models that allows to
discover high-level structure in human activity data. The discovered activity patterns
correlate with daily routines such as commuting, office work, or lunch routine, and they
can be used to recognize such routines in unknown data.






Zusammenfassung

Diese Arbeit untersucht den Einsatz von tragbaren Sensoren zur Erkennung menschlicher
Aktivititen. Die Aktivitidt des Benutzers ist ein Beispiel von Kontext-Information — an-
dere Beispiele sind der Aufenthaltsort des Benutzers, oder der Zustand seiner Umgebung.
Die Erkennung von Kontext ermoglicht es Applikationen, sich an die Situation des Be-
nutzers anzupassen. In dieser Arbeit verwenden wir tragbare Sensoren — hauptsichlich
Beschleunigungssensoren — um menschliche Aktivititen aufzunehmen, zu modellieren
und zu erkennen. Der Einsatz von tragbaren Sensoren ermdglicht eine kontinuierliche
Aufnahme, unabhingig von externer Infrastruktur. Fiir die automatische Erkennung von
Aktivititen existiert eine Vielzahl von Einsatzfeldern, beispielsweise im Gesundheitswe-
sen, bei der Altersfiirsorge, im Fitness-Bereich, oder im Unterhaltungsbereich.

In dieser Arbeit konzentrieren wir uns auf zwei spezielle Herausforderungen bei der
Erkennung von Aktivititen: Erstens die Notwendigkeit, den Umfang der Uberwachung
beim Training von Algorithmen des maschinellen Lernens zu reduzieren. Zweitens die
Erkennung von hoherwertigen Aktivititen, die sich iiber lingere Zeitriume erstrecken
und aus mehreren Aktivititen zusammengesetzt sein konnen. Zum Erreichen dieser Ziele
macht diese Arbeit mehrere Beitrige. Den Anfang macht eine Analyse von Merkmalen
(Features) fiir die Erkennung von Aktivititen. Anhand eines Datensatzes von Aktivititen
wie Laufen, Sitzen, Stehen, oder Springen analysieren wir die Effizienz verschiedener ge-
brauchlicher Merkmale und Fensterldngen, iiber welche die Merkmale berechnet werden.
Unsere Resultate deuten darauf hin, dass die Performanz einzelner Merkmale von der zu
erkennenden Aktivitdt abhiingt, und dass die besten Resultate dann erzielt werden, wenn
Merkmale und Fensterldngen pro Aktivitét individuell ausgewihlt werden.

Um die Notwendigkeit von annotierten Trainingsdaten zu reduzieren, schlagen wir
einen uniiberwachten Lernalgorithmus vor, der Struktur in nicht-annotierten Aufnahmen
von Aktivitidten entdecken kann. Der Ansatz identifiziert korrelierte Untermengen des
Merkmals-Raums und reprisentiert diese mit niedrig-dimensionalen Modellen. Wir zei-
gen, dass die entdeckten Untermengen oft mit unterschiedlichen Aktivitéiten tibereinstim-
men, und dass die resultierenden Modelle zur Erkennung von Aktivititen in unbekannten
Daten eingesetzt werden konnen. In einer weiteren Studie zeigen wir, dass der Ansatz fiir
semi-iiberwachtes Lernen (semi-supervised learning) verwendet werden kann. Genauer
gesagt kombinieren wir den Ansatz mit einem diskriminanten Klassifizierer, und zeigen,
dass dieser Ansatz zu hohen Erkennungsraten fiihrt, selbst wenn nur kleine Mengen an
annotierten Trainingsdaten verwendet werden.

Die Erkennung von hoherwertigen Aktivitidten wie Einkaufen, Hausarbeiten verrich-
ten, oder (zur Arbeit) Pendeln ist eine Herausforderung, da diese Aktivititen sich aus
wechselnden Unteraktivititen zusammensetzen, und von Person zu Person stark variie-
ren. Wir fithren eine Studie mit drei verschiedenen Typen von hoherwertigen Aktivititen
durch, in der wir untersuchen, zu welchem Ausmaf sich traditionelle Methoden zur Akti-
vititenerkennung auf solche Aktivititen anwenden lassen. Die Resultate deuten an, dass
sich unter bestimmten Bedingungen Erkennungsraten von mehr als 90% erreichen lassen.
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Wihrend uniiberwachte Methoden fiir kurzfristige Aktivitdaten vorteilhaft sind, sind
sie fiir langerfristige und hoherwertige Aktivitdten unabdingbar, da fiir solche Aktivita-
ten Annotationen nur sehr schwer zu erlangen sind. Zu diesem Zweck schlagen wir eine
uniiberwachte Lernmethode vor, die Struktur in hoherwertigen Aktivititsdaten aufdeckt.
Die extrahierten Aktivitdtsmuster korrelieren mit alltdglichen Routinen wie Pendeln, Bii-
roarbeit, oder Mensa-Routine, und sie konnen zur Erkennung solcher Routinen in unbe-
kannten Daten eingesetzt werden.
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Introduction

Computers are becoming more pervasive - they are embedded in our phones, music play-
ers, cameras, in clothing, in buildings, cars, and in all kinds of everyday objects which
do not resemble our long-established image of a desktop PC with a screen, keyboard and
mouse. How should we interact and live with many computers that are small, and some-
times hidden so that we cannot even see them? In which ways can they make our lives
better? The vision of ubiquitous computing is that, eventually, computers will disappear
and become part of our environment, fading into the background of our everyday lives
[Weiser 1991]. Ideally, there will be more computers, invisibly enhancing our surround-
ings, but we will be less aware of them, concentrating on our tasks instead of on the
technology.

As designers of ubiquitous computing technologies, we are challenged to find new
ways to interact with this new generation of computers, and new uses for them. One
way of making computers disappear is to reduce the amount of explicit interaction that
is needed to communicate with them, and instead increase the amount of implicit inter-
action. A very simple example of implicit interaction would be the following: instead of
pushing a switch to turn on the light, we could use a motion sensor that registers when
someone enters a room and turns the light on. Thus, we have reduced the amount of ex-
plicit action a user must take, and instead used a sensor to control the light source with a
simple rule.

Thinking further about the light switch example, we would soon notice that simply
turning the light on when motion is detected in a room would not be optimal for several
reasons. For example, the lights would probably turn off if someone was reading and
not moving for some time, and they would turn on even when enough sunlight entered
through the windows. Sometimes the inhabitant might not even want the lights to be
turned on, e.g. when resting or sleeping. Thus, in order to best serve its purpose, an ideal
system in this case would need to have a very good understanding of the state of the user
and his environment, i.e. of the user’s context.

Typical information used to describe a user’s context include his identity, his current
location, the activity he is currently performing, his social interactions or the state of his
environment. Research in context-aware computing uses sensors in the environment or
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carried or worn by the user to extract and interpret the user’s context. By using contextual
information, the physical world surrounding the user becomes part of an application’s
interface, which might reduce or even eliminate the need for explicit user input, thus
allowing the user to concentrate on his task rather than on the computer interface.

This thesis explores a sub-field of context-aware computing. First, we concentrate on a
single yet crucial part of the user’s context, namely his or her current activity. Second, we
use wearable sensors combined with methods from machine learning to record, model,
learn and recognize the user’s activity. One of the key benefits of wearable systems is
the opportunity to perceive the world from a first-person perspective, continuously, and
without the need of external infrastructure. As we will see in the next chapter, activity
recognition with wearable sensors has the potential to enhance existing applications as
well as enable new ones, ranging from personal healthcare and assisted living, to industrial
applications, and even entertainment and arts.

Next, we present the main challenges that researchers face when dealing with activ-
ity recognition, and then give an overview of the contributions that this thesis makes in
addressing these challenges.

1.1 Challenges

In the following we discuss important research challenges in activity recognition. The
first two of them are central to this thesis — namely the constant need for less supervision
(Section 1.1.1), and the exploration of long-term and high-level activities (Section 1.1.2).
We start by discussing these two challenges in more detail, and then give an overview of
other challenges of the field.

1.1.1 The need for less supervision

Most approaches in activity recognition rely on annotated recordings of activity data in
order to train a machine learning algorithm. Obtaining such data, especially together with
sufficiently detailed annotations, or ground truth, is tedious, time-consuming, erroneous,
and may even be impossible in some cases, thus posing a significant barrier to progress in
the field. Due to the difficulties involved in obtaining annotated training data, a large part
of the work that has been published so far is based on data from few individuals, often
the researchers themselves. This leads to various problems, the first and foremost being
that the amount of data is often too small to make reliable estimations of how well the
approach will generalize to different settings or users, or in other words, how useful the
approach is.

Being able to exploit and learn from non- or sparsely-annotated data, which can be
obtained much easier, would greatly simplify many problems in the field of activity recog-
nition. Moreover, there exist large databases of unlabeled data, such as cell phone logs,
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location traces from navigation systems, or even activity diaries from social networking
communities and blogs, which contain a wealth of information from an activity recogni-
tion point of view. For such large databases, any annotation is expensive, or may even
introduce unforeseen bias in the data. As a consequence, semi-supervised and unsuper-
vised machine learning methods that can learn from unlabeled data become more and
more important. Other fields have already realized the need to adopt methods that can
acommodate for large unlabeled data collections, and the activity recognition community
could greatly benefit from such methods as well.

1.1.2 Long-Term and High-Level Activities

As we will see in the next chapter, a majority of work in activity recognition focuses on
relatively short activities that can be measured in minutes or seconds, rather than hours
or even days. Exploring activities on larger time scales is interesting and challenging for
several reasons. First, while activity recognition on small time scales is still poorly under-
stood in many respects, long-term and high-level activities have been even less explored.
E.g., there is neither a consensus about how to define high-level activities, nor which type
of algorithms to use to model, learn and recognize them.

On larger time scales, the types and properties of activities are different from those on
smaller scales, which poses challenges to existing recognition approaches. For instance,
activities such as working or going shopping consist of many sub-activities, which are
performed in changing order and can possibly overlap. They also exhibit a larger variance
in execution than short activities (e.g., think of shopping in a supermarket and strolling
through a pedestrian zone as two different instances of going shopping, or of office work
and construction work of two different working activities). Location and time of day
become more important, but are often not enough to reliably characterize an activity:
there is a large variability in human activities, and different activities can be performed at
the same location (e.g. holding a meeting in a restaurant, having lunch at the office desk,
etc.).

In addition to these challenges, long-term recordings require new annotation tech-
niques that minimize the burden on the user while still attaining sufficiently detailed
ground truth. Moreover, they cannot be deployed in laboratory settings but must be con-
ducted “in the wild”, i.e. in everyday environments, which requires robust and power-
efficient hardware. Finally, they require efficient algorithms in order to deal with possibly
large amounts of data.

1.1.3 Other Challenges

Recognition of Short Activities. Recognizing very short physical activities, for in-
stance hand-gestures for controlling an application, is challenging for several reasons.
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E.g., when aiming to ‘spot’ and recognize such gestures in continuous and long record-
ings, they must first be separated from a possibly large amount of irrelevant background
data. Another challenge is the fact that such activities might be performed in paral-
lel with other activities, e.g. while jogging or riding a bike [Zinnen and Schiele 2008,
Junker et al. 2008].

Lack of Reference Data and Evaluation Procedures. A common problem in the ac-
tivity recognition community is the lack of annotated reference data that could help re-
searchers to compare the performance of their approaches. Efforts in this direction have
been made [Junker et al. 2004], but they haven’t caught on widely yet. The lack of stan-
dard evaluation procedures is related to this problem, which has been addressed eg. by
[Ward et al. 2006b, Minnen et al. 2006a]. Evaluation is particularly difficult for unsu-
pervised approaches for which no ground truth is available. Organizing competitions on
reference data sets, which is common practice in other fields such as computer vision,
might be one way of motivating researchers to agree on standards.

Hardware Challenges. In the area of sensor platforms, miniaturization of components,
as well as increases in memory size and processing power are quickly progressing. How-
ever, energy supply is a bottleneck, which is a problem in particular for continuous and
long-term recognition of activities. This problem has been addressed e.g. by using large
amounts of very simple and low-power sensors [Wren et al. 2007] or by cleverly switch-
ing between high-frequency, yet power hungry, and low-frequency, yet power efficient,
types of sensors, depending on the activity level of the user [Van Laerhoven ez al. 2006].
Reliability and robustness are also challenges for hardware design, especially in the wear-
able context.

New Types of Sensors. Human activities are so diverse that there does not exist one sin-
gle type of sensor that could recognize all of them. For example, while physical motion
can be well-recognized by inertial sensors, other activities, such as talking, reading, chew-
ing, or physiological states of the user, can be better recognized with other, sometimes
dedicated sensors. Making sensors less obtrusive, more robust, easier to use, washable,
even attractive, are other challenges which are addressed e.g. by [Buechley and Eisenberg
20071

Privacy and Security. In order for activity recognition and ubicomp technologies in
general to become widely used and accepted, the prospective users must be sure that their
privacy concerns are respected. For instance, on an application level, it is important to
make sure that no data is recorded without the user’s consent, that devices feature an ‘off’
or ‘mute’ switch, and that the recorded data and any data derived from it stays under the
control of the user. However, privacy aspects can already be considered in the design
of ubiquitous computing systems, leading to various research challenges [Langheinrich
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2005]. Security is a related topic, which has been addressed e.g. by [Mayrhofer and
Gellersen 2007]. Another related topic

Platforms and Toolkits for Soft- and Hardware. Being able to make use of exist-
ing hard- and software platforms is important for researchers to avoid reinventing the
wheel and instead focus on the interesting problems. Especially hardware development
can be time-consuming, and being able to use available sensor platforms such as [Choud-
hury et al. 2008] or [Van Laerhoven et al. 2006] can save valuable time. Much ef-
fort has gone into development of hardware toolkits (e.g. [Greenberg and Fitchett 2001,
Holmquist et al. 2003, Buechley 2006]) and software toolkits (e.g. [Salber er al. 1999,
Hartmann et al. 2007]). These can also help in teaching classes about wearable and
context-aware computing, thus introducing these fields to a wider audience of possible
future researchers.

1.2 Contributions

In the following we summarize the contributions that this thesis makes. Overall, the topics
investigated in this thesis center around two main themes, which can be formulated in the
form of two questions:

1. How can we reduce the amount of annotation needed for activity recognition?

2. How can we recognize high-level behavior from low-level sensors?

The thesis takes several steps towards answering these questions, starting with several
separate investigations, and concluding by proposing a joint approach, namely an unsu-
pervised method for discovering high-level structure in daily activities. In the following
we describe our contributions in more detail.

We begin our investigations with a study of features for activity recognition. The
choice of features is a fundamental first step in applying machine learning methods to
sensor data, and it can have a strong influence on the outcome of any approach. Most
existing approaches use a fixed set of features, regardless of the activity to be recognized.
In Chapter 3, we show that recognition rates can be improved by careful selection of in-
dividual features for each activity. The main contribution of the chapter is a systematic
analysis of features computed from a real-world data set, showing how the choice of fea-
ture and the window length over which the features are computed affects the recognition
rates for different activities.

In Section 1.1.1, we have argued that unsupervised techniques for activity recognition
are highly desirable, since they allow us to learn from non- or sparsely-annotated data.
To this end, Chapter 4 proposes a novel approach to discover structure in sensor data
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of human physical activity. We demonstrate the feasibility of the approach by applying
it to acceleration data recorded from body-worn sensors. When applied to this data, our
approach is able to build low-dimensional models that correspond to different activities,
without requiring any prior training, user annotation or information about the number
of activities involved. When used for classification, the system shows recognition rates
comparable to other, supervised approaches. Also, we show that classification rates can
be improved when combining the data of two sensors located at different body locations.

In Chapter 5 we investigate the topic of semi-supervised learning for activity recog-
nition. We use the unsupervised and generative approach of Chapter 4 and show that
combining it with a discriminative classifier yields several advantages. More specifically,
the generative part of the algorithm allows to extract and learn structure in activity data
without any prior labeling or supervision. The discriminant part then uses a small but la-
beled subset of the training data to train a discriminant classifier. In experiments we show
that this scheme enables to attain high recognition rates even though only a subset of the
labeled data is used for training. In addition to this, we present an analysis and discussion
of the tradeoff between labeling effort and recognition performance.

In Chapter 6 we make a first step towards recognition of high-level activities as they
occur in daily life. More specifically, we investigate how far existing methods for the
recognition of low-level activities can be scaled to the recognition of high-level activ-
ities. To this end, we use a 10h data set to analyze the performance of four different
algorithms for the recognition of both low- and high-level activities. Our experimental
results suggest that it is feasible to recognize certain high-level activities, such as shop-
ping or doing housework, using the same algorithms as for the recognition of low-level
activities.

At the end of the thesis we bring together its two main themes, namely the quest for
less supervision and the investigation of high-level activities. In Chapter 7, we introduce
a novel approach for modeling and discovering daily routines such as commuting, office
work, or lunch routine, from on-body sensor data. We propose to model such routines
as a probabilistic combination of activity patterns. The use of topic models enables the
automatic discovery of such patterns in a user’s daily routine. In addition, we report
experimental results that show the ability of the approach to discover and model daily
routines without user annotation.

Parts of this thesis have been published in refereed conference and workshop papers.
The feature analysis presented in Chapter 3 is reported in [Huynh and Schiele 2005]. The
unsupervised approach for modeling activities (Chapter 4) was first proposed in [Huynh
and Schiele 2006b]. The approach is extended in combination with a discriminative clas-
sifier in [Huynh and Schiele 2006a] (Chapter 5). Recognition of high-level activities is
addressed in [Huynh ez al. 2007] (Chapter 6). The approach for discovering daily routines
(Chapter 7) is introduced in [Huynh ez al. 2008]. In addition, the author has contributed
the activity recognition part of the hybrid approach presented in [Stikic er al. 2008al.
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1.3 Thesis Outline

This thesis is organized as follows.

Chapter 2 gives an overview of related work in the area of activity recognition with
wearable sensors. We give a brief historical perspective and then review different appli-
cations, sensors, activities and machine learning approaches that have been proposed.

Chapter 3 presents a systematic comparison of commonly used features for activity
recognition. The choice of features can be crucial for the success of a recognition algo-
rithm, and prior to our study there existed little work on evaluation of features with respect
to recognition of specific activities.

Chapter 4 introduces a novel approach for unsupervised learning of activities from
low-level sensor data. We describe the algorithm, propose an extension to multiple time
scales, and evaluate the approach on several data sets, showing that it can be used to
reliably model and also recognize activities.

Chapter S suggests a strategy for combining generative and discriminative models
in order to reduce the amount of labeled training data while leveraging information from
unlabeled samples. This is achieved by combining the unsupervised approach that we
introduced in Chapter 4 with the discriminative power of support vector machines.

Chapter 6 takes a step towards recognition of high-level activities from body-worn
accelerometers. We explore to which extent existing methods for activity recognition
can be scaled to more complex and long-term activities such as going shopping or doing
housework.

Chapter 7 continues on the path towards modeling and recognition of high-level ac-
tivities. We introduce an unsupervised approach that allows us to discover and later rec-
ognize daily routines such as working in the office or commuting from body-worn ac-
celerometers.

Chapter 8 summarizes the work of the thesis, draws conclusions and gives an outlook
to possible future work.






Related Work

This chapter gives an overview of the state of the art, current topics and challenges in
activity recognition using wearable sensors. One of the main promises of wearable com-
puting is to enable personal applications that can adapt and react to the current context of
the user. While the term context is usually broadly defined and can in principle encom-
pass any kind of information that relates to the current situation of the user or the objects
surrounding him [Dey 20011, this thesis focuses on the user’s activity, which is often
considered one of the most important ingredients of context besides the user’s location.
Thus in the following we give an overview of work that uses wearable sensors to infer the
current activity of the user.

The chapter is organized as follows. In the next section we give a brief historical
perspective on wearable computing in general and on activity recognition in particular.
Section 2.2 highlights different application areas, and Section 2.3 gives an overview of
the different types of sensors that have been used for actvity recognition. Section 2.4
describes different types of activities, and Section 2.5 introduces the machine learning
approaches that have been applied for activity recognition.

2.1 Introduction

Early work in activity recognition with wearable sensors dates back to the 1990s, when ad-
vances in hardware technology made sensing-, display- and computing-equipment light-
weight enough so that an integrated mobile system could be “worn” by a single person for
an extended period of time (e.g. as described in [Starner ez al. 1999]). Although these re-
search prototypes were still relatively bulky and a long way from “vanishing into the back-
ground” as envisioned by Mark Weiser [Weiser 1991], they held the exciting promise of
making the computer perceive human life from a first-person perspective, thus enabling
truly “personal” applications. Early work centered on traditional, text- and keyboard-
based applications, and then gradually explored new methods of input and interaction e.g.
using wearable cameras [Schiele er al. 1999, Starner er al. 1997] or microphones [Clark-
son and Pentland 1998] and incorporating other context information such as the user’s

9
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current location, the subject of a conversation or the identity of a conversation partner in
order to provide the user with relevant information about his current situation in real-time,
or to store information for later retrieval [Rhodes 1997].

Measuring the physical activity of a person through the use of objective technology
has been a longstanding goal of the medical research community, and accelerometers
have been used for this purpose since several decades (e.g. [Montoye er al. 1983,
Wong et al. 1981]). These early systems aimed to estimate global measures such as
the total energy expenditure or the oxygen requirement of the subject while he or she was
performing a number of different activities. Mobile systems incorporating inertial sensors
that could separate and recognize specific physical activities emerged at the turn of the last
decade, stimulated both by advances in hardware technology, machine learning methods,
and by their expected usefulness for the new paradigm of context-aware computing (e.g.
[Golding and Lesh 1999, Randell and Muller 2000, Cakmakci and Van Laerhoven 2000]).

Current research in activity recognition from wearable sensors covers a wide range
of topics, with research groups focusing on topics such as the recognition of activities
of daily living (ADLS) in the context of healthcare and elderly care (e.g. [Lester et al.
2006]), automated discovery of activity primitives in unlabeled data (e.g. [Minnen et al.
2006b]), semi- or unsupervised learning of activities (e.g. [Wyatt et al. 2005, Huynh and
Schiele 2006b]), or the combination of several sensor modalities to improve recognition
performance (e.g. [Stiefmeier er al. 2006, Wang et al. 2007]).

2.2 Applications

In the following we outline application areas for activity recognition systems in wearable
or mobile settings. We begin with applications for healthcare and assisted living, which
represent an important class of applications. Besides that, there exist a number of other
application areas, such as industrial applications and applications for entertainment and
gaming, which we outline afterwards.

Healthcare and Assisted Living. A major goal of current research in activity recogni-
tion and context-aware computing in general is to enable new health-related applications
and technologies for the aging. Longer life expectancy and declining fertility rates are
increasing the proportion of the elderly population in societies worldwide and posing
challenges to existing healthcare systems. It is hoped that technology can help in address-
ing these challenges, for instance by helping elderly people to live more independent lives
and thus reducing the burden of care-givers.

One type of system designed for elderly people aims to detect potentially dangerous
situations in a person’s life in order to call for external help automatically. Such systems
can be seen as a complement to traditional emergency systems such as smoke- or fire-
alarms, by detecting e.g. when a person has fallen (e.g. [Jafari ef al. 2007, Bourke et al.
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2007]), or when vital body signs indicate imminent health threats (e.g. [Liszka et al. 2004,
Villalba et al. 2006, Anliker et al. 2004]).

Preventing age-related diseases or severe medical conditions before they actually hap-
pen is the goal of another class of applications, which employ long-term monitoring to de-
tect changes or unusual patterns in a person’s daily life that may indicate early symptoms
of diseases such as Alzheimer’s. While automatic detection of subtle behavioral changes
is highly challenging and still a long-term goal of current research, applications that ac-
cumulate and summarize statistics about daily activities (e.g. [Choudhury ez al. 2006]) or
perform continuous recordings of physiological parameters (e.g. [Van Laerhoven 2004,
Anliker et al. 2004, Liszka et al. 2004, Paradiso et al. 2005]) can already be valuable for
physicians and care-givers to estimate the physical well-being of a person.

A third type of health-related system aims to use context-information to promote a
more active and thus healthy lifestyle, or to actively support elderly or disabled people
in performing everyday activities. E.g., [Maitland et al. 2006] use fluctuations in mobile
phone signals to estimate and summarize a person’s activity levels in order to motivate and
encourage reflection on daily activities. [Consolvo er al. 2008] pursue similar goals by
using wearable sensors to recognize specific activities and representing them as different
kinds of flowers in a mobile phone display. [Andrew et al. 2007] combine activity and
location information from wearable sensors to suggest spontaneous exercises, €.g. by
noting that the user has enough time to walk to the next bus stop instead of waiting at
the current one. [Dunne et al. 2006] use wearable optical sensors to monitor spinal
posture, e.g. to detect and prevent back problems due to poor posture. [Patterson er
al. 2004] propose a system for mentally disabled people that analyzes a user’s location
traces, detects anomalies (e.g. when the user is likely to have taken the wrong bus) and
aids in navigation (e.g. by telling the user where to get off and which bus to take next).
[Backman et al. 2006] and [Si er al. 2007] aim to support persons suffering from dementia
through the use of context-aware reminders and similar assistance. [Brashear ez al. 2003]
propose a mobile system for recognition of sign-language based on wearable cameras and
accelerometers.

Industrial Applications. In mobile industrial settings, activity-aware applications have
the potential to support workers in their tasks, help to avoid mistakes and increase work-
place safety, for instance. Wearable platforms supporting workers in tasks such as com-
munication, access to information, or data collection, have been commercially available
since the early 1990s from companies such as Xybernaut [Xybernaut Corp. 2008]. Ac-
cording to an overview by [Stanford 2002], early adopters of such (costly) systems were
companies in which mobile knowledge workers construct, maintain and repair technically
complex and costly systems such as ships, airliners and telecommunication networks.

Currently several research groups explore the next generation of industrial applica-
tions which, among other improvements, take better advantage of the multimodal sensing
capabilities of wearable platforms by inferring context information such as the user’s
current activity. For instance, [Lukowicz er al. 2007] investigate the use of wearable
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computing technology for scenarios in aircraft maintenance, car production, hospital en-
vironments and emergency response. In these scenarios, wearable technology and activity
recognition are used to provide interactive and hands-free access to information such as
electronic manuals or patient records, assist in training of new workers, provide sum-
maries of performed activities, as well as to help in navigation and communication.

[Stiefmeier er al. 2008] use information gathered from wearable and environmental
sensors for tracking activities of workers in car manufacturing plants, e.g. to provide
realtime feedback to the worker about upcoming assembly steps or to issue warnings
when procedures are not properly followed. [Ward er al. 2006a] combine data from
wearable microphones and accelerometers in order to track wood shop activities such as
sawing or hammering.

[Bardram and Christensen 2007] and [Tentori and Favela 2008] report on projects
aimed at supporting hospital staff in their daily routines, e.g. by displaying health records
of nearby patients on a mobile display, prioritizing patient care based on the patient’s
health condition, maintaining awareness of the patients status, and improving communi-
cation between patients and nurses. E.g., [Tentori and Favela 2008] envision a bracelet
worn by nurses, fitted with LEDs for each patient that change color based on the patients
health conditition.

Pentland et al. use wearable and context-aware computing to analyze social patterns in
organizations, thereby extending techniques such as activity-recogniton to possibly large
networks of individuals [Pentland 2007, Pentland er al. 2005]. For instance, they analyze
face-to-face conversations using wearable audio (described in [Choudhury and Pentland
2003]), in order to map social networks, identify experts in the organization and help to
put together project teams. In [Eagle and Pentland 2006al, they use context information
gathered from mobile phones in order to identify common structures in the users’ daily
routines.

Entertainment and Games. Wearable systems using activity recognition are appealing
for applications in the performing arts, e.g. by allowing dancers to augment their per-
formance with interactive multimedia content that matches their motions. Such systems
are described e.g. by [Aylward et al. 2006, Enke 2006, Barry et al. 20051, who employ
wearable inertial sensors combined with machine learning techniques in order to record,
classify and visualize the motion of dancers. For entertainment and gaming systems in
general, the adoption by users may be faster than in other domains, since classification
accuracy is less crucial than e.g. for healthcare systems, and since they usually raise less
privacy concerns. Two out of many examples of gaming applications are the system de-
scribed by [Zhang and Hartmann 2007], in which a motion-sensing clamp attached to
the body or other objects is used to control video-games, or the system by [Heinz e al.
20061, in which wearable inertial sensors are used to recognize moves to control martial
arts games. The recent popularity of game controls based on accelerometers, sparked by
systems such as Nintendo’s Wii platform [Nintendo 2008] or the Apple iPhone [Apple
Inc. 2008], has introduced a wide audience to ideas that originated in the context-aware
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computing research community and are now being widely adopted by companies and
independent developers.

Other Application Areas. There exist numerous other possible application areas for
wearable computing combined with activity recognition, of which the following exam-
ples should provide a brief impression. For example, [Sala et al. 2007] explore the use
of activity-recognition for mobile context-aware advertising. In an educational context,
[Beaudin ef al. 2007] investigate the use of wearable RFID readers combined with tagged
objects for casual learning of a foreign language vocabulary. Finally, [Minnen ez al. 2007]
use a wearable sensing platform to categorize soldier activities, in order to automatically
compile action reports or help in recalling situations during missions.

2.3 Sensors

The types of sensors used for activity recognition range from relatively simple sensors
with discrete output, such as ball switches [Van Laerhoven and Gellersen 2004] or RFID
tag readers (e.g. [Patterson et al. 2005, Philipose et al. 2004]), to sensors with continuous
output such as accelerometers (e.g. [Bao and Intille 2004, Cakmakci and Van Laerhoven
2000]), to more complex sensing methods such as audio processing (e.g. [Choudhury and
Pentland 2003, Stidger et al. 2004]) and computer vision ( e.g. [Nowozin et al. 2007,
Jebara and Pentland 1999, Shi et al. 2004]).

Other, less commonly used types of sensors that have been proposed include fiber-
optical sensors to measure posture [Dunne et al. 2006], foam pressure sensors to measure
respiration rate [Brady er al. 2005], force sensitive resistors to measure muscle contrac-
tions [Lukowicz er al. 2006], and various kinds of physiological sensors such as oxime-
try sensors [Oliver and Flores-Mangas 2006], skin conductivity sensors [Westeyn er al.
20061, electrocardiographs [Linz et al. 20061, body temperature sensors, and combina-
tions of these (e.g. [Gerasimov 2003]).

Accelerometers are probably the most commonly used type of sensor for activity
recognition with wearable sensors. Besides the fact that they usually lead to good re-
sults in recognition of physical activities, they are small and cheap, require relatively little
energy, memory and processing power, and are fairly insensitive to environmental condi-
tions. In addition, users sometimes consider them less intrusive than other sensors such
as microphones or cameras.

Another approach for activity recognition is based on object use, as demonstrated for
instance by [Philipose er al. 2004, Patterson et al. 2005, Naeem er al. 2007]. These
authors instrument objects in the environment with RFID tags, and use data from a wear-
able RFID tag reader to infer household activities (such as preparing food, doing laundry,
washing dishes, etc.). Some of these methods based on Dynamic Bayesian Networks are
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very flexible in principle, although the use of RFID tags restricts the approaches to closed
instrumented environments.

Depending on the type of activity, recognition performance can be improved by us-
ing the same type of sensor at multiple body locations (e.g. multiple accelerometers as
used by [Van Laerhoven and Gellersen 2004, Bao and Intille 2004, Huynh ez al. 2007]),
employing networks of heterogeneous sensors (e.g. [Junker er al. 2003, Kern et al.
2004]) or integrating a variety of sensors on a single device (e.g. [Choudhury et al.
2008]). Combining two or more complementary types of sensor data can also help in
recognizing activities, e.g. by combining motion- and audio-data (e.g. [Lukowicz et al.
2004, Kern et al. 2004, Choudhury and Pentland 2003]), motion- and proximity-data
[Stiefmeier et al. 2006], motion- and location-data (e.g. [Subramanya er al. 2006]),
or motion-data and readings from wearable RFID tag readers (e.g. [Wang et al. 2007,
Stikic et al. 2008a]). The latter is an example of combining wearable sensors with an in-
strumented environment (in this case RFID-tagged objects). A similar approach is taken
by [Stikic er al. 2008b], who combine data from wearable accelerometers and environ-
mental infra-read sensors. The data used in their approach is part of a larger data set
introduced by [Logan et al. 2007], who use wearable sensors in combination with a range
of environmental sensors for detecting object usage (e.g. reed switches and motion sen-
sors for detecting usage of doors, windows, cabinets, etc.) and environmental conditions
(light, temperature, humidity, etc.).

2.4 Activities

With so many envisioned applications and types of sensors to choose from, it comes as
no surprise that the list of activities that people have tried to recognize with wearable
sensors is long. We have already mentioned a number of activities during the discussion
of applications in Section 2.2, thus we only give a brief overview in the following. We
then discuss in more detail related work on high-level activities, which is the focus of
Chapter 6 and Chapter 7 of this thesis.

Physical activities such as walking, standing, sitting and jogging naturally lend them-
selves to recognition with inertial sensors, as these activities are clearly defined by the
motion and relative positions of the user’s body parts. 2D- and 3D-acceleration data has
been successfully used for recognition of such activities by various groups, e.g. [Bao and
Intille 2004, Kern et al. 2003, Krause et al. 2003, Van Laerhoven and Gellersen 2004,
Lee and Mase 2002, Mantyjarvi et al. 2001, Ravi er al. 2005].

An important class of activities in healthcare and assisted living are the so-called Ac-
tivities of Daily Living (ADLs). Originally proposed by [Katz et al. 1963], they have
evolved into a standard set of activities used by physicians and care-givers as a measure
to estimate the physical well-being of elderly patients, as well as their need for assisted
living. The core set of ADLs consists of the activities bathing, dressing, toileting, trans-
ferring, continence, and feeding. The set of ADLs is complemented by the Instrumental
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Activities of Daily Living (IADLs) proposed by [Lawton and Brody 1969], which con-
sist of using the phone, shopping, food preparation, housekeeping, doing laundry, trans-
portation, taking medications, and handling finances'. Recognition of specific subsets
of ADLs and IADLs is demonstrated e.g. by [Philipose et al. 2004, Tapia et al. 2004,
Wang et al. 2007, Chen et al. 2005, Stikic er al. 2008a], who recognize activities such
as making tea, dusting, ironing, vacuuming, cleaning the windows, washing dishes, or
taking a shower. Recognizing the complete set of ADLs and IADLSs using sensors is
challenging, since some activities such as handling finances are only loosely defined, and
others such as continence are difficult to detect. Furthermore, healthcare professionals are
often interested not only in the fact that the patient has performed an activity, but also in
how well the activity was performed. Up to now, automatic estimation of the quality of
performing an activity is a largely unsolved research problem.

Apart from the activities mentioned so far, further activities that can be recognized
with wearable sensors include sports activities such as cycling, rowing, running, calis-
thenics (e.g. [Ermes er al. 2008, Tapia and Intille 2007]) martial arts moves [Chambers
et al. 2002, Kunze er al. 2006], dumbbell exercises [Minnen et al. 2006bl, or jug-
gling [Huynh and Schiele 2006b], furthermore wood workshop activities [Lukowicz et
al. 20041, assembly tasks [Ward et al. 2006a, Stiefmeier er al. 2006, Stiefmeier et al.
2008], reading [Bulling et al. 2008] or chewing [Amft et al. 2005]. Extremely short-term
actvities (also referred to as gestures) such as pulling the handbrake or turning a pedal
are explored e.g. by [Zinnen et al. 2007, Stiefmeier ef al. 2007, Benbasat and Paradiso
2001].

2.4.1 High-Level Activities

Interestingly, a large part of research in activity recognition focuses on rather low-level
and short-term activities. However, in many applications ranging from healthcare to as-
sisted living to modeling of human behavior, the analysis and recognition of high-level
and longer-term activities is an important component. In the following we discuss related
work in the area of activity recognition and -discovery, with a focus on authors aiming
towards high-level activities. We contrast this work with our own contributions on recog-
nition of high-level activities described in Chapter 6 and Chapter 7.

Let us briefly define the terms low-level activity and high-level activity as we under-
stand them, since to the best of our knowledge there exists no generally accepted definition
of these terms in the activity-recognition community. As low-level activities we consider
activities such as walking, sitting, standing, vacuuming, eating, washing dishes, i.e. ac-
tivities which can be characterized by (a statistical sequence of) body motion, posture or
object use, and which typically last between seconds and several minutes. On an even
smaller time scale, brief and distinct body motions such as faking a step or swinging a
bat are sometimes referred to as movements [Bobick 1997], gestures [Ward er al. 2005],

'As noted by [Philipose ef al. 20041, the name ADL is commonly used to refer to both ADLs and
IADLs in the healthcare community.
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or motifs [Minnen et al. 2006bl. High-level activities, on the other hand, are usually
composed of a collection of low-level activities, and are longer-term as e.g. cleaning the
house, which will typically last more than several minutes and can last as long as a few
hours. In this thesis we will sometimes also use the term scene to refer to high-level ac-
tivities. Figure 2.1 illustrates the different activity categories. In the following we report
on related work that aims to model and infer what we consider high-level activities.

Gestures/ Movements/ Motifs

Seconds Brief and distinct body movements,
e.g. taking a step, bending the arm
_ (Low-Level) Activities
Minutes Sequence of movements/ a distinct posture,
e.g. walking, sitting, cleaning windows
High-Level Activities/ Scenes/ Routines
Hours

Collection of activities,
e.g. sightseeing, working at the office

Figure 2.1: One of many possible ways to categorize physical activities is to group them
based on duration and/or complexity. Note that the terms used for the different categories,
and even the categories themselves, vary in the literature.

Clarkson et al. [Clarkson and Pentland 1999] present an approach for unsupervised
decomposition of data from on-body sensors into events and scenes. They use data from
wearable sensors to discover short events such as "passing through a door" or "walking
down an aisle", and cluster these into high-level scenes such as "visiting the supermar-
ket" by using hierarchies of HMMs. Conceptually, this approach is similar to what our
approach described in Chapter 7 can achieve. A notable difference is that our method is
able to perform well on low-dimensional, low-resolution data from accelerometers, while
the approach in [Clarkson and Pentland 1999] relies on high-dimensional and densely
sampled audio and video streams. Since cameras and microphones are often considered
intrusive, such an approach will be difficult to put into practice. Thus we believe that the
method that we describe in Chapter 7 compares favorably both from a computational and
also from a privacy point of view.

Eagle et al. [Eagle and Pentland 2006b] used coarse-grained location and proximity
information from mobile phones to detect daily and weekly patterns of location transi-
tions. Their work ultimately focuses on the group rather than the individual and explores
themes such as social networks and organizational rthythms.

[Hamid er al. 2005] represent activities as bags of n-grams, cluster them into classes of
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activities, and characterize these classes by frequently occurring sequences. The patterns
they discover on a set of 150 days of a person’s indoor location traces are coarse and
relatively difficult to interpret, though.

In a more office- and desktop-centered setting, [Oliver er al. 2002] use a layered
HMM representation to infer office activities such as giving a presentation, having a
conversation or making a phone call, based on low-level information from audio and
visual sensors as well as from the user’s keyboard and mouse activity. In a similar setting,
[Horvitz er al. 2002] combine device usage with calendar data and time of day/ time of
week information to infer a user’s availabily. [Begole et al. 2003] analyze and visualize
daily rhythms of office workers by measuring how active (indicated by computer usage)
a person is during different times of day.

There is a significant amount of work that uses location sensors to extract high-level
information about a person’s activities. The authors in this field often use terms such as
high-level activity when referring to more meaningful descriptions of low-level position
information (such as latitude and longitude), the latter being difficult to interpret by hu-
mans. This is slightly different from the view taken in this thesis, in which we consider
high-level activities rather as a collection of related low-level activities. An example of
work that uses location sensors is given by [Liao et al. 2007], who use information from
GPS sensors to construct models of high-level activity (such as work, leisure, visit) and
to identify significant places. Similarly, [Krumm and Horvitz 2006] use location sensors
to make high-level predictions about driving destinations. These works show that loca-
tion is a powerful cue to the high-level structure of daily life. However, location is often
not enough to identify daily routines reliably, as different activities can be performed at
the same location. E.g. at home, many people are having dinner and breakfast but also
perform work. Similarly, in an office room one might work, hold meetings and even oc-
casionally have lunch. Therefore, we consider the work that we describe in Chapter 7
complementary to these approaches, in that the use of accelerometers allows detection of
more fine-grained activities and can also account for different activities performed at the
same location.

[Amft er al. 2007] introduce a model to detect composite activities composed of
atomic events from a variety of body-worn and environmental sensors. In contrast to our
work described in Chapter 7, they focus on relatively short sequences, and the method
relies on a significant amount of supervision.

Finally, work by Van Laerhoven et. al [Van Laerhoven 2007, Van Laerhoven et al.
2008b, Van Laerhoven et al. 2008a] explores continuous and long-term monitoring of
daily activities with a wrist-worn device, with the goal of developing better techniques
for actigraphy, a method used in the medical domain e.g. for circadian rhythm analysis,
monitoring of wake-sleep patterns, and psychiatric trials with bipolar patients. While their
approach is in principle well-suited for recording of high-level activities, it has a different
focus, emphasizing on small, light-weight and power-efficient hardware design, as well
as efficient online algorithms and compact data representations.
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2.5 Learning to Model and Recognize Activities

In the following we give an overview of machine learning methods that have been used for
activity recognition with wearable sensors. Our descriptions of the basic machine learning
concepts and algorithms will be brief and informal — for a comprehensive mathematical
treatment see e.g. [Hastie ez al. 2001]. As we will see, quite a range of different methods
have been employed. A comparison between methods is difficult for several reasons, one
being the lack of standard data sets in the area of activity recognition, another the fact that
the appropriate approach usually depends on the type of activities and/ or the type of data
that has been recorded.

2.5.1 Supervised vs. Unsupervised Approaches

In general one can make the distinction between supervised and unsupervised learning
methods. Supervised learning, sometimes called “learning with a teacher”, requires la-
beled data on which an algorithm is trained before it is able to classify unknown data. By
contrast, unsupervised learning, or “learning without a teacher”, tries to directly construct
models from unlabeled data, either by estimating the properties of its underlying proba-
bility density (called densitity estimation) or by discovering groups of similar examples
(called clustering). Until now, supervised learning has been the predominant approach
for activity recognition.

Supervised Approaches. The general procedure for training and testing a supervised
learning algorithm for activity recognition consists of the following five steps: (1) ac-
quiring sensor data of activities, including annotations of what the user did when (the
so-called ground truth), (2) transforming the data into application-dependent features,
e.g. by computing specific properties, eliminating noise, normalizing the data or reducing
its dimensionality, (3) dividing the features into a training and a test set, (4) training the
algorithm on the training set, and (5) testing the classification performance of the trained
algorithm on the test set. Commonly, steps (3) to (5) are repeated with different partition-
ing into training- and test set, and the results are averaged — this is called crossvalidation,
and it provides a better estimate of the generalization capability of the algorithm.

There exists a wide range of algorithms and models for supervised learning. Com-
monly used methods in the context of activity recognition include Naive Bayes classi-
fiers (e.g. [Van Laerhoven er al. 2003, Tapia and Intille 2007, Bao and Intille 2004,
Maurer et al. 2006, Huynh and Schiele 2006al), C4.5 decision trees (e.g. [Bao and
Intille 2004, Maurer er al. 2006, Tapia and Intille 20071), and nearest neighbor meth-
ods (e.g. [Kunze et al. 2006, Huynh et al. 2007, Cakmakci and Van Laerhoven 2000,
Ravi et al. 2005, Bao and Intille 2004]). Hidden markov models (HMMs) are well-suited
for capturing temporal patterns in the data, but can be difficult to train due to an abun-
dance of parameters (e.g. [Ward et al. 2006a, Lester et al. 2005, Patterson ef al. 2005,
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Huynh ez al. 2007]). HMMs can be considered as a simple type of dynamic bayesian net-
work (DBN), and more complex types of DBNs have also been used [Wang ez al. 2007,
Philipose er al. 2004]. Other methods that have been applied include support vector
machines (SVMs) [Ravi et al. 2005, Huynh et al. 2007, Loosli et al. 2003], and more
recently string-matching methods [Stiefmeier et al. 2008, Amft et al. 2007]. [Cak-
makci and Van Laerhoven 2000] use Kohonen Self-Organising Maps for online-learning
of activities such as walking, running and riding a bike. Boosting is a so-called meta-
classifier, in which a collection of weak classifiers with accuracies just above chance level
is combined into a single and possibly very accurate classifier (e.g. [Wang et al. 2007,
Stikic et al. 2008a, Minnen et al. 2007, Ravi et al. 2005]). As noted in [Van Laerhoven
2005], boosting methods are well-suited for online implementations in distributed sensor
networks, in which each sensor node can assume the role and the processing tasks of a
weak learner.

Unsupervised Approaches. An unsupervised learning procedure typically consists of
(1) acquiring unlabeled sensor data (2) transforming the data into features, and (3) mod-
eling the data using some kind of density estimation or clustering. During clustering, for
instance, each data point is assigned to one (or more) of N groups of points that are close
with respect to a predefined distance measure. Evaluation of unsupervised approaches is
usually difficult due to the lack of ground truth to which one can compare the discov-
ered structure. In our studies on unsupervised learning of activities described in Chapter
4, Chapter 5 and Chapter 7, ground truth was available which we used to evaluate our
approach in a similar fashion as for the supervised case.

[Clarkson and Pentland 1999] use hierarchies of HMMs to learn locations and scenes
such as walking through the supermarket from audio and video data in an unsupervised
fashion. [Liao et al. 2007, Patterson et al. 2004] use unsupervised learning schemes based
on graphical models. Their focus is on inferring transportation modes (such as bus, car,
walking) and destination goals of the user. [Minnen et al. 2006b] combine discrete string
matching techniques with continuous HMM classifiers to discover short recurring motifs
in acceleration data. They aim to discover and model short term motion primitives, such as
those occurring during physical exercise. [Huynh and Schiele 2006b] use the concept of
multiple eigenspaces for unsupervised learning of activities such as walking or juggling.

Semi-Supervised Approaches. Semi-supervised learning methods represent a third class
of methods that can be applied when parts of the available data are labeled, while for other
(possibly large) parts there exist no labels. Semi-supervised learning is appealing for ac-
tivity recognition, where it is usually expensive to obtain continuous ground truth, but
feasible to ask the user to label small parts of the recordings. Until now there has been
relatively little work on semi-supervised learning for activity recognition with wearable
sensors [Subramanya er al. 2006, Stikic et al. 2008b]. A semi-supervised approach for
activity recognition is described in Chapter 5 of this thesis [Huynh and Schiele 2006al.



20 Chapter 2. Related Work

2.5.2 Discriminative vs. Generative Models

State-of-the-art activity recognition algorithms can roughly be divided in two groups con-
cerning the choice of the classifier, one group using generative models and the other
discriminative models. Generative approaches infer the class-conditional distributions
p(x|C;) of the input data x given class C;. Sampling from these distributions allows the
creation of new data points in the input space, hence the name generative models. To-
gether with an estimate of the prior class probabilities p(C;), the posterior class probabil-
ities p(C;|x) can be determined via Bayes’ theorem

x|C;)p(C;
p(Cx) = LXEIPG) 2.1)
p(x)
The normalizing factor p(x) in equation 2.1 can be determined by
p(x) =} p(x|C:)p(C)) 2.2)

Discriminative approaches, on the other hand, try to directly solve the problem of de-
termining the posterior class probabilities p(C;|x), without modeling the class-conditional
densities p(x|C;). Thus they focus on learning the class decision boundaries rather than
modeling the properties of the individual classes.

Generative models are appealing for several reasons in the context of activity recog-
nition. For example, these models can be learned incrementally or even in a fully unsu-
pervised fashion (as shown for example in Chapter 4 [Huynh and Schiele 2006b]), they
can deal with missing data in a principled way, they allow for modular construction of
composed solutions to complex problems and therefore lend themselves to hierarchical
classifier design. Also, prior knowledge can be easily taken into account. However, the
price for these favorable properties is that generative models tend to produce a significant
number of false positives. This is particularly true for activities that are rather similar
such as walking and walking upstairs. Therefore it is difficult to scale these approaches
to a wide range of sometimes highly similar activities.

Discriminative methods enable the construction of flexible decision boundaries, re-
sulting in classification performances often superior to those obtained by purely proba-
bilistic or generative models [Jaakkola and Haussler 1998, Ng and Jordan 2002]. Related
work in the computer vision community has shown that this allows for example to explic-
itly learn the discriminant features of one particular activity or between multiple activities
[Torralba et al. 2004, Nilsback and Caputo 2004]. Also, recent work has shown the suit-
ability of discriminative methods for recognition of large numbers of activities [Torralba
et al. 2004].

There has been an increasing interest in the machine learning community in devel-
oping algorithms which combine the advantages of discriminative methods with those
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of probabilistic generative models [Jaakkola and Haussler 1998, Lasserre et al. 2006],
showing improvements in performance with respect to purely discriminative or genera-
tive approaches in information extraction (e.g. from biomedical text and gene finding
[Perreira et al. 2004]). However, the activity recognition community has so far typically
chosen one of these two modeling approaches (with the notable exception of [Lester ez al.
2005]). In Chapter 5 [Huynh and Schiele 2006a] we introduce a combined method which
leverages advantages of both approaches.






Features for Activity Recognition

In many wearable computing scenarios, basic activities such as walking, standing and sit-
ting are inferred from data provided by body-worn acceleration sensors. In such settings,
most existing approaches employ a single set of features, regardless of the activity to be
recognized. In this chapter we show that recognition rates can be improved by careful
selection of individual features for each activity. We present a systematic analysis of fea-
tures computed from a real-world data set and show how the choice of feature and the
window length over which the feature is computed affects the recognition rates for differ-
ent activities. Finally, we give a recommendation of suitable features and window lengths
for a set of common activities.

3.1 Introduction

In this chapter we focus on finding suitable features for activity recognition tasks. As
features we consider the result of the transformation of raw sensor data into another space
— the feature space — in which the classification task can be solved more easily. The
choice of features strongly influences the result of the final classification and therefore is
an important step in the design of any activity recognition system. A typical approach
in activity recognition is to compute the features locally over a sliding window which is
shifted over the stream of sensor data. This introduces two additional parameters, namely
the length of the window and the amount of shift between consecutive windows.

Comparing the different approaches to activity recognition, one can observe that a
common approach is to decide on a fixed set of features and a fixed window length and
use this combination for the whole set of activities to be recognized. Even though the
resulting recognition rates can be generally high, they might be improved by selecting
features and window lengths for each activity separately.

In the following we propose to use cluster analysis to rank individual features with re-
spect to a given activity. We then show that the ranking obtained from the cluster analysis
directly translates to recognition results, and is therefore a valid measure for the quality

23
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of a feature with respect to a given activity. We then use this measure to evaluate different
features and window lengths on a data set of six different activities.

The rest of the chapter is organized as follows. Section 3.2 introduces the data set that
we used for our work. In Section 3.3, we give an overview of commonly used features
from accelerometer data, and then describe the features that we used and how we analyzed
them using cluster analysis. We report on the results of the analysis and discuss the
influence of different features and window lengths. In Section 3.4, we show that there is a
direct correspondence between cluster precision and recognition rate for a given activity,
and illustrate this with several examples. Finally, in Section 3.5 we summarize our results
and draw conclusions.

3.2 Dataset

For our experiments, we used data recorded by Intel Research, Seattle [Lester et al. 2005].
The subset we used consists of roughly 200 minutes of sensor data recorded by two sub-
jects who were not affiliated with the researchers. The subjects were given a script con-
taining the activities to perform, namely walking, standing, jogging, skipping, hopping
and riding bus (the latter consisting mostly of sitting). They recorded these activities in
everyday life situations without supervision of a researcher. Later the data was annotated
with the help of recorded video and audio data.

The data was recorded using an integrated sensor board developed by Intel Research
that was attached to the shoulder strap of a backpack the subjects were carrying. The
board contains sensors for 3D-acceleration, audio, temperature, IR/visible/high-frequency
light, humidity and barometric pressure, as well as a digital compass.

3.3 Feature Analysis

Our goal for this study was to identify suitable features and window lengths for recogni-
tion of common activities. We did not want to commit ourselves to a particular recognition
algorithm, as this would have limited the degree to which the results can be generalized.
Therefore, we decided to use a different measure based on cluster analysis, similar to the
one proposed by [Mikolajczyk er al. 2005], which we introduce in the following.

Clustering uncovers structure in data by grouping it according to a given distance mea-
sure. Our rationale for this study was that if clusters of activity data were homogeneous in
terms of their labels, a recognition algorithm would be able to differentiate well between
the activities. Thus, in this section we propose a simple measure of cluster homogeneity
and use it to rank features w.r.t. activities. We then show that this measure is indicative
of recognition performance by feeding the features to a simple classifier. We use a sim-
ple classifier because the purpose of the classifier is not to yield high recognition rates,
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but to show that the results of the cluster analysis can be used to decide on features for
recognition.

As we were mainly interested in evaluating the performance of individual features
for activity recognition, we confined ourselves to one-dimensional features, both for the
clustering and the subsequent recognition. Using the knowledge gained from the feature
analysis, one can later easily combine them to form higher-dimensional features and/or
use them in a more elaborate classifier scheme such as the popular HMM or SVM frame-
works.

3.3.1 Commonly used Features from Accelerometers

Popular features computed from the acceleration signal are mean [Bao and Intille 2004,
Kern et al. 2003, Heinz et al. 2003, Krause et al. 2003, Ravi et al. 2005], variance
or standard deviation [Kern ef al. 2003, Heinz et al. 2003, Lee and Mase 2002, Ravi
et al. 2005], energy [Bao and Intille 2004, Ravi et al. 2005], entropy [Bao and Intille
20041, correlation between axes [Bao and Intille 2004, Ravi ef al. 2005] or discrete FFT
coefficients [Krause er al. 2003]. Energy and entropy are usually derived from the latter.
[Van Laerhoven and Gellersen 2004] use peaks in raw data; [Mantyjarvi et al. 2001] use
powers of wavelet coefficients. The window length over which the features are computed
is usually fixed, e.g. 6.7 sec in [Bao and Intille 20041, 1 sec in [Kern et al. 2003], 2 sec in
[Mantyjarvi er al. 20011, 8 sec in [Krause et al. 2003] and 5.12 sec in [Ravi et al. 2005].

3.3.2 Features used in this Study

This work focuses on features derived from accelerometers, as these have been success-
fully used for the activities we are considering. We decided on a set of features and
window lengths that have been commonly used in related work (see Section 3.3.1 above).
The features were computed over windows of 128, 256, 512, 1024 and 2048 samples.
At a sampling rate of 512 Hz, the lengths correspond to 0.25, 0.5, 1, 2 and 4 seconds,
respectively. The windows were shifted over the data in steps of 0.25 seconds. From each
window, we compute mean, variance, energy, spectral entropy, as well as discrete FFT
coefficients. The FFT coefficients were grouped in six exponential bands, and another
19 features were obtained by pairwise addition of coefficients 142, 243, ..., to 19420.
In addition to that, we computed three features representing the pairwise correlation of
the x-, y- and z-axis. Apart from the features computed from the accelerometer data, we
included the variance of the digital compass and of the visible light sensor.

3.3.3 Clustering

Ideally, when clustering data in feature space, each cluster should contain samples of only
one activity. This would indicate that the data of the given feature was clearly separable
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and thus well-suited as an input for classification. In the worst case, the fraction of sam-
ples of an activity in each cluster would be equal to the a priori probability of the activity.
This would imply that the feature was not discriminative for the given set of activities and
thus unlikely to be suited for recognition.

While there exist a number of measures for the quality of a clustering, such as purity or
normalized mutual information (see e.g. [Manning et al. 2008]), these measures usually
provide a single average result over all classes. As we are interested in the distribution
of individual activities in the clusters, we used a measure that reflects these distributions
better. We describe this measure in the following.

In order to measure the distribution of samples for different activities in the clusters,
we first compute for each cluster i and activity j the fraction

lj‘
Cijl

3.1)

Ci
Pij = |

5

where |C;;| is the amount of samples in cluster i labeled with activity j. We then form
a weighted sum of these fractions to obtain a cluster precision p; for each activity j:

Z ’Cijlpij

[P — (3.2)
oYl

Thus, if an activity’s cluster precision is close to one, this indicates that there are
many clusters mainly consisting of samples for this activity. We weight each fraction by
the number of samples it represents in order to prevent smaller clusters from dominating
the result.

In order to reduce overfitting artifacts, we did not directly measure cluster precision
on the result of the clustering, but instead applied a five-fold cross validation scheme as
follows. The data was first randomized and divided into five equally sized partitions. K-
means clustering was then applied to four of the five partitions, the fifth being left for
testing. Testing was done by assigning each sample in the test partition to the nearest
cluster, based on distance from sample to cluster centroid. The cluster precision was then
measured on the assignments of the test partition.

3.3.4 Results

In the following we report on the results of the feature analysis. We first discuss the
influence of the different features, and then of the different window lengths over which
the features were computed.
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Figure 3.1: Cluster Precision for the activities hopping, jogging and riding bus (sitting),
for ditferent features and window lengths. The horizontal line in each plot marks the a
priori probability of the activity.

The feature computation yielded about 50,000 samples for each type of feature '.The
results we show are based on k = 1000 clusters (we also evaluated other numbers of
clusters (e.g., 100), but the results vary relatively little). Figures 3.1 and 3.2 show the
average cluster precision per feature and window length (a more condensed summary
view is shown in Figure 3.7). Each plot corresponds to one activity, and each line in a plot
represents one window length. Note that the lines connecting the different values are only
drawn for better readability, and have no meaning apart from that. The horizontal line in
each plot marks the a priori probability of the activity.

ISince we used the same amount of shift for all window lengths, the actual window length had little
influence on the total number of samples.
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Figure 3.2: Cluster Precision for the activities skipping, standing and walking, for dif-
ferent features and window lengths. The horizontal line in each plot marks the a priori
probability of the activity.

The plots in Figures 3.1 and 3.2 indicate a clear difference between the cluster preci-
sion of stationary activities such as standing and riding bus (the latter consisting mainly
of sitting in the bus) and the moderate to high intensity activities, namely walking, jog-
ging, hopping and skipping. One can observe that the variance in the cluster precision
of different features is much higher for activities with moderate to high intensity levels.
Not surprisingly, for these activities the FFT features perform clearly better than most of
the other features. However, there is much variation between the cluster precision of the
different FFT coefficients. E.g., for skipping, when using a window length of 4 seconds,
the cluster precision between FFT coefficients 13+14 and 15416 drops from 0.9 by almost
80% to 0.12. Similar differences can be observed for hopping and jogging. Furthermore,
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no single FFT feature is best for all activities. The coefficients 1+2 are among the top five
features for walking, hopping and riding bus. Coefficients 2+3 have the highest precision
of all features for skipping, walking and riding bus. Coefficients 3+4 attain high precision
for jogging, hopping and riding bus. For all other coefficients, no clear statement across
multiple activities can be made. Instead, one has to take a close look at each activity to see
which coefficients are best. For standing, coefficients 12 to 16 and 7 to 8 perform best,
for jogging coefficients 3+4, and for hopping coefficients 7+8. For walking and riding bus
variance does remarkably well, being in third and fourth place, respectively. For walking,
riding bus and hopping, the third exponential FFT band might serve as a compromise to
the FFT coefficients, since it ranks among the first five features for these activities.

Comparing the different window lengths to each other, we observe that for walking,
jogging and riding bus, the 1 second window attains the highest precisions on average.
For skipping and hopping, the 2 and 4 second windows score best on average, while the
0.25 and 0.5 second windows attain relatively low precision for all features of these two
activities. For standing, the short windows of 0.5 and 0.25 seconds achieve high precision
for a range of FFT coefficients. The longer windows of 2 and 4 seconds are not suited for
standing — the precision for these window lengths is quite low. In contrast to this, jogging
has some peaks with more than 80% precision for 1, 2 and 4 second windows. The 0.25
and 0.5 second windows work not very well for jogging, except for the FFT coefficients
1+2.

When looking at features and window lengths combined, the following are the best
combinations per activity: hopping: FFT coeff. 748 over 4 sec; skipping: FFT coeff. 2+3
over 2 sec; jogging: FFT coeff. 3+4 over 1 sec; riding bus/sitting: FFT coeff. 2+3 over
1.0 sec; walking: FFT coeff. 2+3/ 1 sec; standing: FFT coeff. 12+13/0.5 sec. It should
be noted that for most activities, there is more than one combination that performs well,
as can be seen from Figures 3.1 and 3.2.

In conclusion, an important result of our analysis is that there are features and win-
dow lengths which perform well across different activities, but in order to achieve best
performance one should choose features separately for each activity.

3.4 Recognition

In this section we show that our measure of cluster precision can serve as an indicator of
recognition performance, by comparing our results to the output of a simple classifier. We
construct the classifier by dividing the computed features into training and test sets in the
same fashion as the cluster analyis, then apply k-means clustering on the training set and
label each training cluster i with its dominating activity j = argmax j (pij). Each sample
of the test set is then either classified according to the label of the nearest centroid i, if
pi; >t for a given threshold ¢, or as unknown otherwise. Varying the threshold 7 between
0 and 1 allows us to plot a precision-recall curve for a given activity and feature.
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3.4.1 Results

To test our hypothesis that cluster precision is an indicator of recognition performance, we
chose the activity walking and used the three features with the highest cluster precision
as input for the classifier. The results are shown in Figures 3.3, 3.4 and 3.5. One can
observe that the order imposed on the curves by the equal error rates (the intersections
of the curves with the diagonal line) and by the precision p (shown in square brackets)
are the same for all three plots. This indicates that for a given feature, we can use the
cluster precision of different window lengths to estimate how well recognition rates for a
particular window length will be.

In order to be useful, the results of the cluster analysis must not only generalize across
different window lengths, but also across different features. Next, we validate this by
comparing the recognition rates of different features to each other.

Walking - FFT coeff. 1+2

1 .. T T T T T T T T T
0.9 3
e ().25 sec [p=0.73]
0.8f ./ 0.5 sec [p=0.85]
o7k /I = = = 1,0 sec [p=0.75]
el 2.0 sec [p=0.62]
_06f J === n1 4.0 sec [p=0.52]
8 05 - .’ ) <
e ]
m L]
0.4 1 .
0.3} 1 1
I
0.2 - L] -
1
0.1F I 1
L)
O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 - Precision

Figure 3.3: Recognition results for the activity walking using the FFT coefficients 1+2
computed over different window lengths.

Figure 3.6 shows the recognition results for the six different activities, using the five
best combinations of feature and window length in terms of cluster precision p (shown in
square brackets in the legend). In most cases these are FFT coefficients. Recognition of
Jjogging and walking performs particularly well, with equal error rates up to about 90%.
Note that many curves are very steep, indicating that by lowering the threshold of the
classifier, higher recall can be obtained without sacrificing precision.

Our main goal, however, was less to attain high recognition rates than to investigate
to what extent the results of the cluster analysis generalize to the recognition results.
One can see that in most cases, the order is preserved, i.e. features with higher cluster
precision also have better recognition rates. For standing and riding bus there are only
small differences in the equal error rates, just like in the precision values. For skipping,
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Figure 3.4: Recognition results for the activity walking using the FFT coefficients 2+3
computed over different window lengths.
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Figure 3.5: Recognition results for the activity walking using the the variance of the
acceleration signal as feature.

the order is preserved except for one feature (FFT coefficients 2+3). A possible reason for
this is that the differences in cluster precision for these features are very small. Also, the
samples for skipping constitute only about 1.5% of the total number of samples, which
might introduce artifacts.
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Figure 3.6: Recognition results for different activities. For each activity, the five best
combinations of features and window lengths in terms of cluster precision are shown. For
each combination the cluster precision p is indicated in square brackets.

3.5 Summary and Conclusion

We have seen that by clustering features and by comparing them to each other in terms of
cluster precision, one can obtain detailed information about how well a particular feature
is suited for activity recognition. Our proposed measure of cluster precision turned out
to be a good indicator for the recognition performance of a feature. We gave a detailed
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comparison of the cluster precisions of a range of features and showed that the ranking
obtained from the cluster analysis is reflected in the recognition rates of the different
features.

Overall, our results indicate that in contrast to an assumption that is sometimes implic-
itly made, there is neither a single feature nor a single window length that will perform
best across all activities. Figure 3.7 shows a summary of the results w.r.t. to the different
features, averaged over all window lengths. By looking at the different features, we found
that the FFT features always rank among the features with the highest cluster precision.
However, the FFT coefficients that attain the highest precision are different for each ac-
tivity, and recognition can be improved by selecting features for each activity separately.
Our recognition results also indicate that combining different FFT coefficients to bands
of exponentially increasing size might be a compromise to using individual or paired
coefficients. For the non-FFT features, we found that variance often performs well. Sur-
prisingly, the often-used mean of the acceleration signal has lower precision values than
variance throughout the set of activities, except when used with a window length of 0.25
seconds for jogging and skipping.

In terms of window lengths, we found that on average, features computed over win-
dow lengths of one and two seconds attain slightly higher precision values than those
computed over other window lengths. However, there are significant differences across
the different activities, and as for the features, selecting different window lengths for dif-
ferent activities leads to better recognition rates. E.g., the 1 second window has the highest
average precision values for the activities jogging and walking; the 2 and 4 second win-
dows attain high values for skipping and hopping, and the 0.25 and 0.5 second windows
reach relatively high precision for the activity standing.

Our results indicate which features and window lengths are good candidates for recog-
nizing certain activities. For specific scenarios, however, the choice of feature can depend
on additional factors such as the nature of the dataset, the type, characteristics, and posi-
tion of the sensors used for recording, or on computational constraints. For instance, the
computation of frequency features is relatively expensive in terms of processing power,
so that one might decide in favor of simpler features when aiming for devices with limited
processing capabilities. These considerations should be kept in mind when applying our
results.

In the next chapter we will turn to the first of the two challenges that are the main
focus of this thesis, namely the development of methods for activity recognition which
require little or no supervision during training.
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terms of cluster precision is shown. The results are averaged over all window lengths.



Unsupervised Learning of Activities

In this chapter we propose a novel scheme for unsupervised detection of structure in ac-
tivity data. Our method is based on an algorithm that represents data in terms of multiple
low-dimensional eigenspaces. We describe the algorithm and propose an extension that
allows to handle multiple time scales. The validity of the approach is demonstrated on
several data sets and using two types of acceleration features. Finally, we report on exper-
iments that indicate that our approach can yield recognition rates comparable to current
supervised approaches.

4.1 Introduction

Activity recognition is typically based on supervised learning techniques. As we have
already argued in Section 1.1.1, it is desirable to reduce the amount of supervision to a
minimum for various reasons. An important argument in favor of less supervision is that
for large amounts of data and/ or many activity classes, labeling simply becomes impracti-
cal and error-prone. Also, in order to quickly adapt to different users and usage scenarios,
a context aware system should be able to support adaption through unsupervised learning
techniques with minimal feedback.

Motivated by these considerations, we will next propose an unsupervised approach
to discover structure in sensor data in order to model and recognize human activities.
The proposed approach is neither limited to activity learning and recognition, nor to a
particular type of sensor. Rather it can be applied more generally to many types of sensors
and context information.

The chapter is organized as follows. First, an unsupervised learning scheme for
the discovery of activities in sensor data is proposed, based on the concept of multiple
eigenspaces. Second, the multiple eigenspace algorithm is extended to handle multiple
time scales of sensor data, thereby reducing its dependency on fixed time scales, which
are often not known beforehand. Third, an experimental comparison of two different fea-
ture representations for the discovery of activities at different time scales are evaluated.
Fourth, the algorithm is evaluated on real-world data from body-worn sensors, yielding
comparable performance to fully supervised learning approaches.

35
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4.2 Multiple Eigenspaces

Principal component analysis (PCA) is a standard technique in pattern recognition and
machine learning to reduce the dimensionality of feature spaces. PCA finds the princi-
pal components (or eigenvectors) of a data distribution spanning a linear subspace (or
eigenspace) of the feature space. PCA is an unsupervised technique in the sense that it
finds the optimal linear subspace to represent the data without any annotation or user in-
tervention. In many applications however, it is more appropriate to represent the inherent
structure of a data-set not with a single but with multiple eigenspaces [Leonardis ef al.
2002].

In the following we show that the concept of multiple eigenspaces can be used to
detect and represent structure such as individual activities in accelerometer data. We
first give a formal problem description (Section 4.2.1) and then describe an algorithm to
extract multiple eigenspaces (Sections 4.2.2 to 4.2.5). We then propose an extension to
the algorithm that can handle multiple time scales (Section 4.2.6). Section 4.3 then gives
an example illustrating the different stages of the algorithm.

4.2.1 Problem Description

Principle component analysis (PCA) allows to approximate each vector x; of a set § =
{X1,X2,...,X;|X; € R"} by an approximation X;,i = 1,...,m, so that

p
R = eo+ ) yie, 4.1)
k=1

i.e., by a vector ey € R" plus a linear combination of p (eigen-)vectors ey,...,e, (p <
n,e; € R"). PCA is optimal in the sense that for a given number of eigenvectors p, the
reconstruction error €2 = Y, ||x; — &;|| is minimal.This is achieved by defining e; as
the mean of all x; € § and ey,...,e, as the eigenvectors corresponding to the p largest
eigenvalues of the covariance matrix of the vectors in §. We call the linear subspace
spanned by e, e,...,e, the eigenspace of G of dimension p, in short £(G). If p =0, then
E(9) only consists of the mean.

If the vectors in G are sufficiently correlated p can be chosen to be much smaller than
the dimension of the original vector space, while still maintaining a low reconstruction
error £2. In such cases, £(G), together with the coefficients yi, ..., yp (see eq. 4.1) of each
X; € G, can serve as a low-dimensional representation of G.

In many cases, however, a single linear eigenspace will be too general to capture the
low-dimensional structure of the data. Consequently, the dimension of £(G) must be
high in order to obtain acceptable reconstruction errors. Apart from the computational



4.2. Multiple Eigenspaces 37

(a) (b)

Figure 4.1: Using multiple instead of a single eigenspace to model a dataset can lead to
more compact and low-dimensional representations. In this simple example, the dataset
consists of three distinct clusters, so that a single eigenspace will not be able to capture the
structure well (a). When using one eigenspace per subset (b), the structure of the data is
captured much better, and reducing the dimension of the eigenspaces will lead to smaller
reconstruction errors than in (a).

issues involved, this means that the eigenspace cannot serve as a good representation of
the inherent structure of the data. In such cases, it would be more suitable to divide G
into sufficiently correlated subsets §; C G and represent those subsets with eigenspaces
€j(G;), or short €;. Each of those eigenspaces could then serve as a compact and low-
dimensional model of the corresponding part of the data. Figure 4.1 illustrates this idea.

The problem to be solved is thus, given a set of data vectors G, to find sets §; C
G, eigenspaces &; and dimensions p;, so that each x; € §; can be approximated to a
predefined degree of accuracy by its projection

pj
R = egj+ Y Vijex;- 4.2)
k=1

4.2.2 Overview of the Multiple Eigenspace Algorithm

Leonardis et al. [Leonardis er al. 2002] proposed an iterative procedure to solve the above
problem by simultaneously finding subsets §; C G, eigenspaces €;(G;) and dimensions
pj- As aresult the data in the input set G is divided into significantly correlated subsets
of similar structure, each represented by a separate eigenspace. As we will show in the
experiments these eigenspaces correspond to individual activities in accelerometer data
and can be used for activity recognition.

The algorithm consists of three phases, namely initialization, eigenspace growing and
eigenspace selection. During initialization, small subsets of data vectors are chosen from
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the input set G, and their respective eigenspaces are calculated and initialized with di-
mension zero. During eigenspace growing, the initial sets are successively enlarged by
adding data vectors and accepting or rejecting them based on reconstruction error. At the
same time, the corresponding eigenspaces are recomputed and their dimension is adapted.
Since the growing process produces overlapping and thus redundant sets and eigenspaces,
the final eigenspace selection phase applies an optimization procedure that finds a sub-
set of eigenspaces that best represent the data with minimal redundancy. Importantly,
the number of eigenspaces that are finally selected is determined automatically during
eigenspace selection and does not have to be specified in advance. In the following we
describe the three phases of the algorithm in more detail.

4.2.3 Initialization

The input to the algorithm is a set § = {x1,Xa,...,X;;|X; € R"} containing data vectors
which we will refer to as segments in the following. During initialization, a large number
of small and redundant subsets 9(} C G is generated, uniformly distributed across G. In
the extreme case, each segment in G can serve as an initial subset 99- (as in our examples).
For each GY, the corresponding eigenspace 89(99) is calculated, and its dimension p? is
set to zero, i.e., the eigenspace equals the mean of the segments contained in 9(}.

4.2.4 Eigenspace Growing

After the initial sets 9? have been constructed, they are iteratively enlarged and their
corresponding eigenspaces are updated. In the following, 9tj and Stj denote the set §; and
its eigenspace & ;, respectively, at step ¢ of the iteration. ptj denotes the dimension of 8’]-
at step ¢.

The growing process is driven by two error measures, &; and p;. §; is related to single
segments and denotes the reconstruction error ||x; — X;|| of segment x; when projected
onto an eigenspace. The second error measure, p;, is related to eigenspaces and defined
as the sum of the reconstruction errors of all segments contained in §; after projection
to &;. Both & and p; are associated with thresholds that cause the growing process to
terminate once the errors get too large.

The term growing refers to increasing the size of a set of segments, as well as to
increasing the so-called effective dimension p of the corresponding eigenspace. The ef-
fective dimension denotes the dimension which is necessary to represent the segments in
the eigenspace to an adequate degree of accuracy, and it can usually be chosen to be much
smaller than the full dimension of the eigenspace.

In step ¢ of the iteration, the following procedure is applied to each set 9;: Each
segment not contained in 9;. is projected onto E’j. If a segment’s reconstruction error &;
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is below a threshold, the segment is temporarily accepted into the set 9’;”. If none of
the segments are accepted, the growing for this set is terminated. Otherwise, the new
eigenspace & 1! and its aggregate reconstruction error p ; are calculated. If the error
is below a threshold, the new eigenspace is accepted. Else, the effective dimension p;
of 83“ is increased by one, and the error is recomputed. If the increase in dimension
has lowered the error below the threshold, the new eigenspace is accepted. Otherwise,
both 9;-“ and E’J-“ are reverted to their previous state, and growing of this eigenspace is
terminated.

In the worst case, i.e. when all sets §; grow until they include all segments in G, the
complexity of eigenspace growing is O(nm?), where n is the dimension of the segments
and m the number of segments in §. However, this only holds if there is no or only very
little structure in the data. Usually the sets only grow to a fraction of the total number of
segments, which significantly reduces computation.

4.2.5 Eigenspace Selection

The result of eigenspace growing is a set of eigenspaces each representing a subset of the
input data. The set is redundant in the sense that the subsets overlap in many cases. With
respect to robustness of the final outcome this redundancy is an important property of the
algorithm.

In the selection step, a subset of the eigenspaces is selected that best represents the
data with minimal overlap between the eigenspaces. This is achieved by solving an op-
timization problem based on the principle of minimum description length (MDL). The
goal can be formulated as minimizing the overall description length L(9) of the input G
in terms of eigenspaces:

L(S) = L(M)+L(G|M). (4.3)

Here, L(M) denotes the encoding cost of the model, which in our case is the encoding
length of all eigenspaces, plus the encoding length of the coefficients yy ; for all segments
x; € . L(G|M) are the costs of specifying the data given the model, which in our case
equal the reconstruction errors resulting from the reduced dimension of the eigenspaces.

As noted by [Leonardis et al. 2002], minimizing the description length is equivalent
to maximizing the savings S(€;(G;)) one obtains from encoding the segments X; € §; in
terms of the eigenspace & instead of encoding them individually. These savings can be
expressed as

S(€;(8)) = KolS;|  —(Kipj+Ka|S;lp;+K3|Sjlp;) - (4.4)

individual encoding encoding with eigenspace
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In this equation, the constant K is related to the cost of encoding a segment in G
without an eigenspace, K] is related to the cost of describing an eigenvector, K> is related
to the average cost of specifying a coefficient, and K3 is related to the average cost of
specifying the error. Using the savings S(€;(§;)), the optimization problem can be solved
by maximizing an objective function of the form

i1t Cir
F(hy=h"Ch=hn" | : | h, (4.5)
Crl 0 Cpr
where the binary vector h = [h1,hs, ..., h,]T represents a possible set of eigenspaces,
h; being 1 if the eigenspace j is included in the set, and O if not. The diagonal entries
cjj,j=1,...,r of the matrix C are the savings obtained by the j-th eigenspace, i.e. ¢;; =

S(€;(G;)). The off-diagonal entries ¢ j; penalize overlaps of pairs of sets §; and Gy:

cik=19; NG| (—Ko+ K3pjx) /2, (4.6)

where |G ;N G| denotes the number of segments shared by G; and G, and pj; is the
maximum error of the segments in ;M G;. Using a greedy algorithm, the optimization
problem can be solved in O(r?) time, where r is the total number of eigenspaces in con-
sideration.

In Section 4.3 we give a detailed example of the different phases of the multiple
eigenspace algorithm. Before that, we next propose an extension that allows to analyze
data on different time scales.

4.2.6 Extension to Multiple Time Scales

The multiple eigenspace algorithm operates on a single time scale, i.e., all input segments
are of the same length. While this property may be acceptable in some domains, for
activities it is not obvious which scale or length a data segment should have. Furthermore,
as we have seen in Chapter 3, we must assume that there is no single ‘best’ segment size,
as activities happen on different time scales. For these reasons, we extended the algorithm
to include multiple scales and allow for different segment sizes.

The extended version of the algorithm accepts as input a signal and a list of n seg-
ment sizes. Initialization (Section 4.2.3) and eigenspace growing (Section 4.2.4) are then
performed n times. Each time, the signal is divided into signals of a different size. This
results in n sets of eigenspaces representing parts of the input at different scales. All
of them compete to be included in the final description during a modifed version of the
eigenspace selection step. We modified the eigenspace selection so that segments and
reconstruction errors on different scales can be compared to each other. In the following
we describe the modified selection step in more detail.
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Modified Eigenspace Selection

In the selection step of the original approach, cost and savings were defined in terms of
entire segments. Since in the modified algorithm, segments can be of different size, we
need to redefine the savings in order to make them comparable across different segment
sizes. We achieve this by defining the savings in terms of individual samples instead of
segments. For a set §; containing segments made up of /; samples each, the savings
S(€;(9;)) achieved by encoding the segments in terms of the eigenspace &; can be ex-
pressed as

S(Ej(S)) = Kol|Sj|— (Kipj+K2|Gj|pj+K3|Slp;) 4.7
= ;|G| —1jpj — K2|S|p; — K3|S;lp; (4.8)

We thus replaced the constants Ky (cost of describing a segment without an eigenspace)
and K (cost of encoding an eigenvector) by the variable segment length /;. In the matrix
C of the optimization function (see eq. 4.5) the diagonal terms now represent the adapted
savings, ¢;; = S(€;(G;)), and the off-diagonal entries c j are redefined as

cik = |5;NSk|(—1+Kzpj)/2 (4.9)

where |G in Gx| describes the number of samples (before: segments) contained in the
intersection of the sets §; and Gy.

4.3 Example

Figures 4.2 and 4.3 illustrate the different phases of the multiple eigenspace algorithm for
a single time scale. The upper part of Figure 4.2 shows an acceleration signal, recorded
by an accelerometer attached to the wrist of a user while juggling 3, 4 and 5 balls, re-
spectively. The signal was divided into segments of four seconds and transformed to the
frequency domain before applying the algorithm.

The bottom plot of Figure 4.2 shows the result of the growing phase, i.e. the sets G;.
The horizontal axis represents the segments into which the signal was divided, and the
vertical axis corresponds to the sets G ;. Inrow j, the segments belonging to the set §; are
marked in gray (e.g., Gg consists of segments 6 to 11). Three sets were chosen during the
final selection procedure, they are highlighted in the figure. Note that there are only a few
sets of segments across the borders of the three juggling patterns, and the final sets match
the three patterns closely.

Figure 4.3 illustrates the eigenspace growing process for the example in Figure 4.2:
Initially, each set is made up of one segment. As the growing proceeds, one can observe
three groups of sets forming along the three parts of the signal. Finally, during eigenspace
selection (see sec. 4.2.5), one set of each of those groups gets selected. Figure 4.4 shows
the effect of using different error thresholds & and p.



42 Chapter 4. Unsupervised Learning of Activities

Magnitude of Wrist Acceleration
T T

20 l I
10 -
0 | [ | | | | |
10 20 30 40 50 60 70
seconds
Result of MES
I I I I I I I I
2
|
Set g] 8

Segment X;

Figure 4.2: Application of the multiple eigenspace algorithm to an acceleration signal.
Top: Magnitude of wrist acceleration. Bottom: The result of eigenspace growing. The
sets G; are marked, and those that were finally selected (G,,Gs and G13) are highlighted.
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Figure 4.3: Eigenspace growing and selection corresponding to the data in Figure 4.2.
From left to right, different stages of the growing process are shown. The rightmost plot
shows the result of the selection step.

4.4 Initial Experiments

After describing the multiple eigenspace algorithm and giving an example in the previous
section, we now demonstrate the feasibility of our approach for analyzing sequences of
activity data. First, we briefly introduce the sensor platform and the data sets used for our
experiments. Then, we discuss two possible methods of applying the algorithm: using
raw acceleration data on multiple time scales and using FFT features on a single time
scale. Finally we compare the two feature representations in terms of their classification
performance. While for the results of this section a relatively short recording of different
walking modes was used, the next section will report on results obtained from longer
recordings of mixed activity data.
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Figure 4.4: Effect of varying the error thresholds & and p that control acceptance of new
segments X; into sets G ; during the eigenspace growing phase (based on the data shown in
fig. 4.2). Low thresholds lead to small sets (a), and high thresholds may lead to large sets
that cover all of the data (c). In (b) we show the results for 6 = p = 3.5 10~3, which we
found to work well for all datasets that we used. Set membership is indicated in gray, and
the sets determined by eigenspace selection are highlighted.

4.4.1 Sensor Platform

Figure 4.5(a) shows the sensor platform used for the experiments. The main components
are four inertial sensors connected to an IBM X40 laptop via a USB hub. The laptop,
together with batteries and adapters, is situated in a small backpack carried by the user,
and the inertial sensors are worn by the user, e.g. on wrist, hip, ankle or other parts of
the body. The recording software runs on the laptop and can be remote-controlled from a
PDA. As inertial sensors we initially used the model MT9-B by Xsens and later the model
MTx, which features a larger measurement range and better on-board processing capabil-
ities. Besides 3-D acceleration, the sensors output 3-D rate of turn and 3-D magnetic
field data, as well as an absolute orientation estimate. For annotation purposes, we also
record audio data using a stereo microphone clipped to the shoulder strap of the backpack.
Figure 4.5(b) shows the entire sensor platform worn by a user.

4.4.2 Data Set

The sensor platform described above was used to record data of various activities, ranging
in length from several seconds to about thirty minutes. During recordings, the inertial sen-
sors were attached to wrist, hip, thigh and ankle of the user. In the experiments we report,
we focus on the data from wrist and hip, as preliminary experiments showed that these two
locations were discriminant enough for our set of activities. For the initial experiments,
walking modes of different speeds were recorded separately. Subsequent recordings con-
sist of a mix of several activities, including different walking modes, climbing stairs and
juggling different numbers of balls.
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(a) The sensor platform used for the experiments. (b) User with sensors on hip,
thigh, wrist and ankle.

Figure 4.5: Sensor Platform

4.4.3 Experiments with Multiple Time Scales

Figure 4.7 shows the result of applying the extended multiple eigenspace algorithm to the
signal shown in Figure 4.6, using three different segment sizes. The signal consists of the
acceleration magnitude measured at the hip, covering three different modes of walking
(walking at normal pace, jogging and walking fast) and sampled at 200 Hz for about one
minute. The sets corresponding to the four eigenspaces chosen by the selection step of
the algorithm are highlighted. The topmost covers the entire signal, while the remaining
three each represent segments that correspond to the three walking modes, respectively.
Each of those three eigenspaces is based on a different segment length.

We found that in order to obtain eigenspaces that represent activities well, the under-
lying segment lengths need to match the periodicity of the data closely. Thus, in order to
obtain satisfying results, one has to carefully choose segment lengths, e.g. based on the
periodicity of the signal. This makes the approach rather inflexible. Furthermore, since
we are interested in finding structure in an unsupervised fashion, we cannot assume that
we know about the periodicity or other properties of the data in advance. To address these
issues, we changed our features from raw signal data to frequency components, which we
will discuss in the next section. Apart from that, we believe that the proposed extension
of the multiple eigenspace algorithm to multiple time scales is a general scheme that can
be applied to any kind of data, and which allows simultaneous analysis of data at different
time scales.

4.4.4 Experiments in Frequency Space

We conducted a series of experiments using FFT coefficients computed over the acceler-
ation signal as features, with the goal of obtaining a representation of the data that does
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Figure 4.6: Constructed dataset, consisting of three different walking modes (left third:
walking, middle third: jogging, right third: walking tast). Shown is the magnitude of the
acceleration measured at the hip, sampled at 200 Hz.
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Figure 4.7: Result of applying the adapted algorithm to the signal shown in Figure
4.6. Three different segment sizes between 0.88 and 1.18 seconds were used, and four
eigenspaces were selected, which are highlighted in the figure.

not require a priori knowledge about properties such as the periodicity of the signal. For
these experiments we applied the multiple eigenspace algorithm on single time scales. We
found that FFT features computed over a single scale can be used effectively to separate
different activities using multiple eigenspaces. However, the choice of the segment length
involves a tradeoff between short segments that capture basic activities but might yield
unstable FFT results, and longer segments which yield more stable results but might be
too long to allow discrimination between basic activities.

During the experiments, we found that segment sizes of around 4 seconds lead to
good results when using FFT features in combination with our set of activities. Figure
4.8 shows the result of applying the multiple eigenspace algorithm to the FFT coefficients
computed over the signal shown in Figure 4.6. Figure 4.8(a) shows the spectrogram,
the vertical axis corresponding to the first 35 FFT coefficients, the horizontal axis to the
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Figure 4.8: Application of the multiple eigenspace algorithm to data of three different
walking modes (see fig. 4.6). As features, FFT coefficients computed over windows of
four seconds were used.

segments of the signal. For all three walking patterns, most of the energy is contained in
the first three coefficients, however each activity has a distinct and consistent distribution
of peaks in the rest of the spectrum. This structure is captured well by the eigenspaces,
as can be seen from Figure 4.8(b). Three eigenspaces are selected, each corresponding
to a different walking pattern. Figure 4.8(c) shows one of the feature segments for the
activity walking at normal pace and its reconstruction, which differs only slightly from
the original.

These initial experiments led us to believe that using multiple eigenspaces on features
in frequency space is a promising approach to detecting structure in more diverse sets of
activities. Before discussing such experiments in Section 4.5, we will first report on some
initial classification results in the next section.

4.4.5 Classification

The eigenspaces obtained from the algorithm can be used as classifiers for activities,
based on the reconstruction error of unknown data segments. To classify a segment, it
is projected onto each eigenspace and then assigned to the one that yields the lowest re-
construction error. When using a sliding window, we classify individual samples using
segments that end at the sample. In the following we compare the classification perfor-
mance of models based on signal- and FFT-features.

In Figure 4.9, two runs of the multiple eigenspace algorithm on the walking patterns,
with subsequent classification, are compared side by side. Figure 4.9(a) shows the re-
sult when using the adapted version with multiple time scales on the plain acceleration
signal. The bottom plot shows the reconstruction error of the signal for all five models
(eigenspaces) that were selected. For each model, the reconstruction error was computed
over a sliding window of the same size as the segment size of the model, and shifted over
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the signal in steps of single samples. As a consequence, the error is smallest when the
window is aligned with the segment positions at construction time of the models, and
largest when shifted by 50%. This results in an oscillating reconstruction error with a
period of the segment size of the eigenspace. Figure 4.9(c) shows a close-up view of the
reconstruction errors in Figure 4.9(a). To avoid that the oscillating errors are reflected in
an unstable classification result, we performed a smoothing by classifying each sample
by the model with the lowest error over a window of preceding samples. This leads to
the classification results shown in Figure 4.9(a). Walking normal, jogging and walking
fast are assigned to model (i.e. eigenspace) 1, 4 and 5 respectively. Furthermore, one can
observe that model 2, which represents large parts of the signal as a result of the algo-
rithm, is outperformed in terms of reconstruction error by other, more specialized models
throughout the length of the signal.

Even though the classification results using plain acceleration data are acceptable, the
sensitvity of the reconstruction error to the position of the sliding window advises against
using the raw signal as feature. In contrast, Figure 4.9(b) shows that in the frequency
domain, similar (sample-based) classification results can be obtained without the need to
smooth out the error curve. The bottom plot of Figure 4.9(b) shows that for models based
on FFT features, the curves of the reconstruction errors are smooth and stable within
each of the three parts of the signal. This implies that this approach is insensitive to shifts
between the sliding window and the segment boundaries at the time of model construction.
Moreover, for each part of the signal, the errors are in distinct order. Altogether, these
properties result in a more robust classification. As a consequence, we only consider FFT
features in the remaining experiments.

4.5 Experiments with Mixed Activity Data

In this section, we show how our approach finds structure in real-world recordings that
cover a number of different activities. The data was recorded using the sensor platform
described in Section 4.4.1, and two inertial sensors were worn on wrist and hip of the
user. We will first report on the results for hip and wrist individually, and then show
how performance can be improved by combining the models of both recordings. The
recordings lasted for about a quarter of an hour. As features we use FFT coefficients,
computed over windows of 4 seconds, as this combination had proven to yield the best
results in the above experiments. The feature vectors were normalized to length 1 before
being passed to the multiple eigenspace algorithm.

The recording shown in Figure 4.10 contains six different activities: walking, walking
upstairs, walking downstairs, and juggling 3, 4 and 5 balls, respectively. The top of
the figure shows the raw signal, which in this case is the magnitude of the acceleration
occurring at the hip, sampled at 100 Hz. The middle plot shows manual annotations, i.e.
ground truth for the data. Applying the multiple eigenspace algorithm to this data resulted
in seven eigenspaces. With these eigenspaces we performed a classification of the training
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Figure 4.9: Comparison of two different feature representations. Figures 4.9(a) and 4.9(b)
show, from top to bottom: acceleration signal; result of applying the multiple eigenspace
algorithm (the selected models are numbered); classification based on reconstruction er-
ror; reconstruction errors of the ditferent models (i.e. eigenspaces).
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data based on reconstruction error, the same way as described in Section 4.4.5. The result
is shown at the bottom of Figure 4.10. Samples that were not assigned to any model
because of too large reconstruction errors appear in the row labeled with 0.

When comparing the ground truth to the model assignments in Figure 4.10 , one can
observe that the structure is visually similar. On closer inspection, one can see that the
activity walking is mainly represented by models 4, 5 and 6. Walking upstairs corresponds
to model 1, and walking downstairs to models 2 and 3. The juggling sequences are all
assigned to a single model (7), which is not surprising, since there is only very little (and
thus nondiscriminative) hip movement during juggling.

In order to judge the quality of the model assignments, we manually chose for each
activity the models that best represented them and computed recall and precision values
for each set of models representing an activity. The result for the data in Figure 4.10
is shown in the column labeled Hip in Table 4.1. The models for walking (4, 5 and 6)
reach precision and recall values close to 100% (0.99 and 0.98 respectively), followed by
walking downstairs(1.0/0.93) and walking upstairs (0.80/1.0). As there is only one model
(7) for the three juggling activities, the table contains only one entry for all three, which
stands for the activity juggling (0.32/1.0).

Figure 4.11 shows a second set of acceleration data, recorded at the wrist. The ground
truth is the same as for Figure 4.10. Fewer models were selected this time, but they de-
scribe the data more precisely than the models for the hip recording — there is a significant
gain in the average precision over time (from 0.57 to 0.76) and only a slight reduction in
recall (from 0.98 to 0.92). The increase in precision is due to the fact that the juggling
patterns can be discriminated at the wrist.

In Figure 4.12, a combination of the models from the wrist and hip recordings is used
for classification. Each model from the wrist recording was combined with each model
from the hip recording to form a new model, which makes for 7*8 = 56 models (the not-
assigned cases were included as model 0). The result can be seen at the bottom of Figure
4.12. Overall precision and recall are now above 90% (0.93/0.97). Compared to the hip
recording this means a slight decrease in recall, but on the other hand, the three juggling
patterns can now be separated. When comparing to the wrist recording, one can observe
significant increases in the precision values for juggling 4 balls (0.04 to 0.84) and walking
upstairs (0.49 to 0.84).

4.6 Conclusion

An important argument made in this chapter is that unsupervised techniques for activ-
ity recognition are highly desirable. To this end we haved proposed a novel approach
to discover structure in sensor data of human activity in an unsupervised fashion. We
demonstrated the feasibility of the approach by applying it to acceleration data recorded
from body-worn sensors. For the set of activities analyzed, our system was able to build
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Figure 4.10: Recording of approx. 14 min length, magnitude of hip acceleration. From
top to bottom: raw signal, ground truth, and classification based on seven models con-

structed by the multiple eigenspace algorithm.

Activity Data Set

Hip Wrist  Combined
Walking 0.99/0.98 0.93/0.97 0.99/0.97
Walking upstairs 0.80/1.00 0.49/1.00 0.84/1.00
Walking downstairs 1.00/0.93 0.95/0.45 0.98/0.93
Juggling 3 balls 0.76/1.00 0.82/1.00
Juggling 4 balls 0.32/1.00  0.04/1.00 0.84/1.00
Juggling 5 balls 0.60/1.00  0.60/1.00
Average over time 0.57/0.98 0.76/0.92  0.93/0.97

Table 4.1: Precision/Recall for different activities and data sets

models that correspond to different activities, without requiring any prior training, user
annotation or information about the number of activities involved. When used for classi-
fication, the system shows recognition rates comparable to other, supervised approaches.
We found that for acceleration data of basic activities such as walking, using frequency
components as features results in models that can represent the different activities well
and that can be used for robust classification. Finally, we showed that classification rates
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Figure 4.11: Recording of approx. 14 min length, magnitude of wrist acceleration. From
top to bottom: raw signal, ground truth, and classification based on six models constructed
by the multiple eigenspace algorithm.

can be improved when combining the data of two sensors located at different body loca-
tions.

An aspect that is appealing for activity recognition is that the number of activities does
not need to be specified beforehand. Instead, the convergence of the method is controlled
mainly via the sample inclusion thresholds. In practice, we found that it suffices to use a
single parameter that is coupled to the thresholds via constant factors.

Obviously, the results presented in this chapter are only a first step towards unsuper-
vised discovery of activities in arbitrary sensor data. As pointed out before, however, the
multiple eigenspaces approach is general in the sense that in principle it can handle differ-
ent sensor modalities and different types of activities. In the next chapter, we will focus
on the generative nature and the classification capabilities of the approach, and show that
in combination with discriminant learning, high recognition rates can be obtained with
only little supervision.
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Combining Discriminative and
Generative Learning

State-of-the-art activity recognition algorithms can roughly be divided in two groups con-
cerning the choice of the classifier, one group using generative models and the other
discriminative approaches (see Section 2.5.2 for a discussion). This chapter presents a
method for activity recognition which combines a generative model with a discriminative
classifier in an integrated approach. The generative part of the algorithm allows to extract
and learn structure in activity data without any prior labeling or supervision. The discrim-
inant part then uses a small but labeled subset of the training data to train a discriminant
classifier. In experiments we show that this scheme enables to attain high recognition
rates even though only a subset of the training data is used for training. Also the tradeoff
between labeling effort and recognition performance is analyzed and discussed.

5.1 Introduction

In this chapter we integrate two different types of approaches into a single common
framework to fully exploit their strengths while minimizing their weaknesses. More
specifically, we combine a generative model (multiple eigenspaces) with SVM training
on partially labeled training data. The idea of using a generative model inside a ker-
nel function has been proposed before [Jaakkola and Haussler 1998, Jebara er al. 2004,
Vasconcelos et al. 2004, Tsuda ef al. 2002] and a similar idea has been applied to activ-
ity recognition [Lester e al. 2005]. However, these approaches do neither address nor
analyze the issue of reducing the amount of supervision and labeled training data.

The first main contribution of this chapter is the combination of the generative model
of multiple eigenspaces with a discriminant SVM classifier into a single activity recog-
nition framework. On the one hand the new integrated approach allows to significantly
increase recognition accuracy w.r.t. to the multiple eigenspace approach by rejecting false
positives more effectively. On the other hand the approach allows to train discriminant
classifiers on only part of the data and therefore to substantially reduce the amount of su-
pervision required. The second main contribution are experimental results which show the

53
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superiority of the new integrated approach, both with respect to the multiple eigenspace
approach and with respect to a baseline system using a Naive Bayes classifier. The per-
formance is analyzed in particular with respect to the amount of labeled training data, and
the tradeoff between supervision and recognition accuracy is shown experimentally.

The rest of the chapter is organized as follows. Section 5.2 gives a short introduction of
the multiple eigenspace approach (for details, see Chapter 4). Section 5.3 then introduces
the integrated approach that uses multiple eigenspaces and discriminant training in order
to learn discriminant classifiers on partially labeled data. Section 5.4 consists of three sets
of experiments to analyze the performance of the integrated approach as well as to analyze
its performance when the amount of supervision is reduced. Section 5.5 concludes the
chapter.

5.2 Multiple Eigenspaces

As we have seen in Chapter 4, the multiple eigenspace algorithm is a general proce-
dure to extract and represent low-dimensional structure from high-dimensional input data
[Leonardis er al. 2002]. It is based on principal component analysis (PCA), a common
technique in pattern recognition to reduce the dimensionality of feature spaces (see [Duda
et al. 2004], for example). While PCA finds a single eigenspace that best represents all
input features in a least-squares sense, the multiple eigenspace approach finds several of
such eigenspaces, each representing a highly correlated subset of the input data. The ad-
vantage of this approach is that the dimensionality of the resulting eigenspaces can be
much lower than when using a single eigenspace. More importantly, the eigenspaces can
serve models for correlated subsets of the data. As we have seen in Chapter 4, such models
can be used to detect and represent structure such as individual activities in accelerometer
data. In this chapter we focus on the generative nature of the algorithm and its ability to
discover structure in data without supervision.

Example. Figure 5.1 shows an example of applying the multiple eigenspace algorithm
to features computed from twelve body-worn accelerometers (the features and dataset are
described in detail in section 5.4.1). The upper plot of Figure 5.1 shows the features,
and the middle plot shows the ground truth of the recording, consisting of eight different
activities the user was performing while wearing the sensors.

Sixteen eigenspaces were chosen in the final selection phase. Each eigenspace is
a representative model for a subset of the input, and these models often correspond to
activities of the user. This can be seen from the bottom plot of Figure 5.1, in which we
assign to each segment the eigenspace which has the lowest reconstruction error with
respect to the segment. E.g., eigenspace 16 largely corresponds to activity 6 (writing on
the whiteboard), eigenspace 14 to activity 1 (standing), and eigenspace 2 to activity 2
(walking).
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Figure 5.1: Application of the multiple eigenspace algorithm to features computed from
twelve body-worn accelerometers. Top: mean and variance of the acceleration signals.
Center: ground truth of performed activities. Bottom: assignment of eigenspaces to sam-
ples, based on reconstruction error.
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Even though there is seldom a perfect correspondence between models and activities,
one can clearly see that there is a high correlation between several models and activities.
This fact can be used to turn the models into classifiers, by associating each model with
the activity that occurs most often in the subset covered by the model. We report on the
results of the classification in Section 5.4. Before that, we describe in Section 5.3 how
we combine the multiple eigenspace algorithm with a discriminative classifier, namely
support vector machines.

5.3 Combining Multiple Eigenspaces with Support Vec-
tor Machines

In Chapter 4 we have seen that the concept of multiple eigenspaces can be exploited for
unsupervised discovery of structure in activity data [Huynh and Schiele 2006b]. Interest-
ingly, the system was able to build models that correspond to different activities without
requiring any prior training, user annotation or information about the number of activities
involved. When used for classification, the system showed recognition rates comparable
to other, supervised techniques.

However, the approach of multiple eigenspaces suffers — as many other generative
models — from a significant number of false positives. In order to improve recognition per-
formance there is a clear desire to learn and incorporate discriminant information through
a discriminant classification scheme. In this chapter we adopt the support vector frame-
work as it has shown competitive performance on a wide range of different classification
tasks.

Obviously, the incorporation of a discriminant classifier requires to use labeled train-
ing samples. However, an important emphasis of the integrated approach is to keep the
amount of required supervision to a minimum. Therefore, during training the approach
leverages on the ability of multiple eigenspaces to learn in an unsupervised fashion an
intermediate representation and structure description of the sensor data. This allows to
use relatively small amounts of supervision while still obtaining competitive recognition
performance.

5.3.1 Support Vector Machines

In the following we briefly describe classification with Support Vector Machines (SVMs).
Further details can be found e.g. in [Vapnik 1998]. Consider the problem of separating
a set of training data (x1,y1),(X2,y2),...,(X1,y1) into two classes, where x; € R" is a
feature vector and y; € {—1,+1} its class label. If we assume that the classes can be
separated by the hyperplane w*x+ b = 0, and that we have no prior knowledge about the
data distribution, then the optimal hyperplane (i.e., the one with the lowest bound on the
expected generalization error) is the one with the maximum distance to the closest points
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Figure 5.2: Example of a support vector classifier in the case where the two classes are
linearly separable by a hyperplane wxx+b = 0. SVMs find parameters w and b so that
the margin that separates the two classes is maximized.

in the training set. The optimal values for w and b can be found by solving the following
constrained minimization problem:

1
miI?EHWHZ, subjectto yi(wxx;+b)>1Vi=1,....m (5.1)

w,

This is equivalent to maximizing the so-called margin that separates the two classes.
Figure 5.2 illustrates this concept for a simple example in which the classes are separable
by a hyperplane wxx+ b = 0. Solving 5.1 using Lagrange multipliers o;(i = 1,...,m)
results in a classification function

i=1

f(x) = sign (i Otiyiw*x—i—b) : (5.2)

where o; and b are found using an SVM learning algorithm [Vapnik 1998]. Most of
the o; take the value of zero. Those x; with nonzero ¢; are the so-called support vectors.
In cases where the classes are non-separable, the solution is identical to the separable case
with a modification of the Lagrange multipliers to 0 < o; < C,i=1,...,m, where C is the
penalty for misclassification.

To obtain a nonlinear classifier, one maps the data from the input space R" to a high
dimensional feature space H by x — ®(x), such that the mapped data points of the two
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classes are linearly separable in the features space. Assuming there exists a kernel func-
tion K such that K(x,y) = ®(x) « P(y), a nonlinear SVM can be constructed by replac-
ing the inner product w x x by the kernel function K(x,y) in equation 5.2. This corre-
sponds to constructing an optimal separating hyperplane in the feature space. Kernels
commonly used include polynomials K(x,y) = (x*y)? and the Gaussian Radial Basis
Function (RBF) kernel K(x,y) = exp{—7¥|/x —y||*}. For our experiments we used the
RBF kernel.

The extension of SVMs from 2-class to N-class problems can be achieved e.g. by
training N SVMs, each separating a single class from all remaining classes.

5.3.2 Combining Multiple Eigenspaces with SVMs

In order to train an SVM with minimal labeled training data we proceed in two steps.
In the first step we use the multiple eigenspace approach to obtain a description of the
data that captures the essential structure of the activity data. As the multiple eigenspace
approach is fully unsupervised, we can use all sensor data that is available to us, whether
labeled or not. The use of unsupervised training data is essential and a desired feature
of the approach as this allows to learn from far more data than in the supervised case to
derive a good representation and description of the sensor data. Essentially, the approach
of multiple eigenspaces provides a low-dimensional description of the sensor-data which
lends itself to training SVMs.

In the second step we use the obtained eigenspaces to construct features for training
the discriminant SVMs. More specifically, we calculate for each labeled training segment
a vectord =dj,...,d, of reconstruction errors. The element d; is the error of the sample
with respect to the eigenspace i, introduced earlier. This corresponds to a soft assignment
of samples to eigenspaces, as opposed to the hard assignment in the previous chapter,
where each sample was assigned to exactly one eigenspace. By doing this we provide the
SVMs with more information for their classification task.

Before feeding the error vectors and the corresponding labels to the SVM, we scale
each component d; of the vectors by

a2

di=e o (5.3)

The goal of this transformation is to obtain feature values between 0 and 1 with the
property such that the distribution of small (and discriminant) errors is preserved and the
errors beyond a certain threshold are mapped to zero. The threshold can be controlled by
adjusting the value of o in equation 5.3, which is related to the variance of the transfor-
mation function.

We use a radial basis function as kernel for the SVMs. The parameters C and y (y
corresponds to the width of the RBF-kernel) were determined by sampling the parameter
space on an exponential grid.



5.4. Experiments 59

During classification, we assign to each test sample a vector d of reconstruction errors
and transform this vector in the same fashion as done for the training. We then pass the
transformed vector to the SVMs for classification.

5.4 Experiments

The following experiments were designed to investigate two main questions. First, how
does the performance of the new integrated approach of multiple eigenspaces and SVM-
training compare to its predecessor, namely multiple eigenspaces, and to naive bayes
classification as a baseline. And second, what is the effect of decreasing the amount of
labeled training data on the three different types of learning algorithms.

After introducing the data set in section 5.4.1, the following sections describe three
sets of experiments, each set for a different classification scheme. The first experiment
(section 5.4.2) describes and analyses the naive Bayes approach as a baseline and example
of a classical supervised approach. The second set of experiments (section 5.4.3) uses
the unsupervised and generative approach of multiple eigenspaces described above. The
third set of experiments (section 5.4.4) uses the integrated approach that combines the
generative nature of multiple eigenspaces with SVM learning on subsets of training data.

Each experiment was performed in five different configurations. In each configuration
we change the amount of labeled training data while leaving the size of the test data
unchanged. We start by dividing the entire dataset into 80% training and 20% test set.
Then we gradually decrease the amount of labeled training data, from 80% down to 5%
of the entire dataset, while leaving the size of the test set fixed. For the naive Bayes
classifier, this means that the size of the available training data is reduced in each iteration,
as it cannot learn from unlabeled data. The multiple eigenspace approach however can
still be trained on the unlabeled data. It uses the reduced set of labeled training data only
for learning a mapping from labels (i.e. activities) to the models it has constructed from
the unlabeled data. Similarly the integrated approach uses the unlabeled data to train
the multiple eigenspace model and only uses the reduced set of labeled training data for
SVM-training.

The recognition rates that we report represent the recall of the classifier with respect
to an activity, i.e., the number of correctly classified samples divided by the total number
of samples for a given activity.

5.4.1 Data Set and Features

For our experiments we use a dataset published by Kern et al. [Kern er al. 2003]. It
consists of eight everyday activities, namely sitting, standing, walking, walking upstairs,
walking downstairs, shaking hands, writing on the whiteboard and typing on a keyboard.
The activities were recorded by twelve 3D acceleration sensor nodes distributed over the
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user’s body. The sensors were attached to the ankles, knees, elbows, shoulders, wrists and
to both sides of the user’s hip. Each node consists of two 2D-accelerometers fixed at an
angle of 90 degrees. The overall length of the dataset is 18.7 min, recorded at 92Hz.

The data was recorded in one consecutive run in a semi-naturalistic setting, and there-
fore not each activity is represented by the same amount of data. Thus, in order to avoid
bias in our recognition experiments, we use an equal but random amount of data from
each activity for constructing our test- and training sets.

The data samples are vectors of 48 acceleration values, from which we compute the
running mean and variance over a window of 50 samples (i.e. about 0.5 seconds), which
results in a 96-dimensional feature vector. The window is shifted over the data one sample
at a time. In general one could use smaller overlaps between windows, but we found that
smaller overlaps have a negative impact especially for small amounts of training data.
Since our experiments focus on reducing the amount of training data, we decided to use
the maximum overlap for best performance. We did not, however, use individual features
and window lengths for each activity, since our goal was not to maximize the classification
performance for specific activities.

Mean and variance of the acceleration signal are cheap to compute and have success-
fully been used for recognizing the activities we are considering (e.g. [Bao and Intille
2004, Kern et al. 2003, Krause et al. 2003, Ravi et al. 2005]). We use these simple
features for all approaches described in this chapter.

5.4.2 Naive Bayes

We use a naive Bayes classifier as a baseline for our experiments. It is a generative,
supervised approach which requires labeled training data for classification. Despite its
simplicity, naive Bayes has yielded high recognition rates for the activities and features
we use (e.g. [Kern er al. 2003, Van Laerhoven et al. 2003]).

Bayes’ rule states that the probability p(a|x) of an activity a given an n-dimensional
feature vector x = x1,...x, can be calculated as

p(xla)p(a)

plah) = P

In this equation, p(a) denotes the a-priori probability of the activity. The a-priori prob-
ability p(x) of the data is only used for normalization. We ignore it in our experiments,
since we are only interested in relative likelihoods and not absolute probabilities.

Assuming that the different components x; of the feature vector x are independent, we
can compute the likelihood p(x|a) =[], p(x;|a) from labeled training data.
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Experiments. We represent each probability density function p(x;|a) by a 100 bin his-
togram. As stated, we use 96-dimensional vectors of running mean and variance over a
window of 50 samples as features. We performed five experiments, each time reducing
the amount of training data by a factor of two. We started with 80% training data and
20% test data, and gradually decreased the amount of training data to 5%, while leaving
the amount of test data fixed. The amount of test data stayed constant for all experiments.
Each experiment was repeated five times with different parts of the data for training and
testing, and the average over all runs was taken as result. For the initial experiment (80%
training, 20% test data), this corresponds to a standard 5-fold crossvalidation.

Results. Table 5.1 shows the results of the experiment. Recognition of the activities
obviously strongly depends on the amount of available training data. When looking at the
average recognition rate, one observes that it steadily drops by about 6% each time the
amount of training data is halved, from 73.5% in the beginning to 50.1% percent in the
end. This reduction in overall performance is to be expected and a main motivation to
search for methods that can obtain high recognition rates using small amounts of training
data.

Also, one can observe that the recognition rates vary greatly between the different
activities. Stationary activities such as sitting and standing achieve higher rates than dy-
namic activities such as walking upstairs or downstairs. The highest rate is achieved for
standing (95%), and the lowest for walking upstairs (51.4%). When comparing the differ-
ent configurations, the rates for standing and sitting stay relatively stable as the amount of
training data is reduced. Presumably this is because there is not much variation in the fea-
tures for these activities, which means that a small amount of samples is already enough
to capture the characteristics of the activity. Writing on a whiteboard (which is similar to
standing) has also high rates, but eventually drops from 93.6% in the beginning to 81.3%
when only 5% of the data are used for training. The rates for walking drop significantly
— from 86.5% to 40.8% — when the training data is reduced, as do the rates for shaking
hands (from 53.7% to 9.8%). The rates for walking upstairs and walking downstairs also
both drop by about 30%.

5.4.3 Multiple Eigenspaces

For this experiment we first trained the multiple eigenspace algorithm on the unlabeled
features, i.e. on the mean and variance computed over a sliding window of 50 samples.
In order to reduce the time and space complexity of the growing and selection phases of
the algorithm, we initially performed a k-means clustering (k = 100)! on the features and
used the resulting cluster centers as seeds for the growing phase.

!'Using other cluster numbers than 100 only had small effects on recognition performance, thus we only
report on the results for k£ = 100.
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Amount of Training Data
Activity 80% 40% 20% 10% 5%

stand 95.0 94.8 945 94.1 935
sit 91.7 923 928 91.6 925
walk 86.5 799 70.6 556 40.8
upstairs 593 504 39.1 363 312

downstairs 514 354 26.0 232 199
shake hands 53.7 439 325 204 98
whiteboard 93.6 932 914 87.1 81.3
keyboard 57.0 50.8 56.0 45.6 31.8

Average 735 67.6 629 56.7 50.1

Table 5.1: Recognition Rates using naive Bayes, for different amounts of training data.
The amount of test data was left fixed at 20%.

Next we assigned activities to the resulting models (i.e. eigenspaces). First we as-
signed to each training sample the model with the lowest reconstruction error. Then,
using the labels of the training samples, we counted which activity was associated most
often with a given model. This activity was then assigned to the model, so that the model
could be used later for classifcation. Again, we conducted five experiments in total, each
time reducing the number of labeled samples used for finding the mapping between mod-
els and activities. We decreased the amount of labeled samples in the same way as for the
previous experiment (from 80% to 5% of the entire dataset) and left the size of the test set
unchanged.

For testing, we assigned to each test sample the activity of the model with the lowest
reconstruction error. Each configuration was run five times with different parts of the data
for training and testing, and the average over all five runs was taken as result.

Results. Table 5.2 shows the results of the experiment. The distribution of rates differs
in various aspects from result of the naive Bayes experiment. When using 80% training
data, the average recognition rate is slightly lower than the one of the naive Bayes ex-
periment. However, the strength of the approach becomes visible when looking at the
runs with reduced training labels — different from the supervised approach, the average
rate does not drop but consistently stays at around 70%. This tendency is visible for all
individual activities — for none of them, the recognition rate drops by more than 6% when
reducing the labeled training set from 80% to 5% of the dataset. Throughout all configu-
rations, standing, writing on a whiteboard and typing on a keyboard achieve the highest
recognition rates, with typing on a keyboard consistently scoring over 90%.
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Amount of Training Data
Activity 80% 40% 20% 10% 5%

stand 824 858 84.1 843 822
sit 43.1 434 521 548 47.1
walk 749 746 754 742 73.1
upstairs 68.7 67.8 68.6 64.0 64.0

downstairs 59.2 63.2 62.8 59.8 533
shake hands 52.6 53.0 59.5 539 53.6
whiteboard 81.8 78.6 77.2 789 78.8
keyboard 92.1 90.2 90.7 91.0 91.8

Average 694 69.6 713 70.1 68.0

Table 5.2: Recognition Rates using Multiple Eigenspaces, for ditferent amounts of train-
ing data. The amount of test data was left fixed at 20%.

5.4.4 Multiple Eigenspaces combined with SVMs

In this experiment we first trained the multiple eigenspace algorithm in the same way as in
the previous experiment. Again, the seeding of the eigenspace growing was performed us-
ing kmeans clustering (k = 100) on the training features. After obtaining the eigenspaces,
we trained an SVM with features constructed from the reconstruction errors, as described
in Section 5.3.2.

As in the previous experiments, each configuration of test and training sets was run
five times, and the average over all five runs was taken as result.

Results. Table 5.3 shows the results of this third experiment. When using all annota-
tions and as expected from discriminant training of the SVMs, the recognition rates are
significantly increased w.r.t. to both other approaches. The average performance is more
than 88% with most rates above 85% and a maximum of 98% for typing on a keyboard.
For example, walking upstairs and walking downstairs both reach over 90%, which is
considerably higher than in both of the previous experiments. Shaking hands also has
rates which are 30% to 40% higher than in the previous experiments. As the number of
annotations is reduced, the average recognition rate drops from 88.8% to 64.7%, which is
a similar dropoff compared to the naive Bayes approach. However, the absolute rates are
about 15-20% above those of the naive Bayes experiment.

5.4.5 Discussion

Figure 5.3 shows the performance of all three approaches in one plot. The plot shows the
average recognition rate as the size of the labeled training data is successively reduced by
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Amount of Training Data
Activity 80% 40% 20% 10% 5%

stand 88.0 823 80.6 755 66.2
sit 83.2 78.6 73.8 69.2 48.6
walk 79.7 688 71.1 60.9 51.1
upstairs 91.7 89.7 82.1 78.8 749

downstairs  95.0 92.1 883 75.2 78.8
shake hands 85.6 852 759 72.1 67.3
whiteboard 85.8 76.7 75.6 59.9 505
keyboard 98.0 94.1 949 87.3 80.2

Average 88.3 834 803 724 64.7

Table 5.3: Recognition Rates using Multiple Eigenspaces combined with an SVM, for
different amounts of training data. The amount of test data was left fixed at 20%.

a factor of two. On this exponential scale, the performance of the supervised naive Bayes
approach decreases almost linearly. In contrast, the unsupervised multiple eigenspace ap-
proach has an almost constant performance throughout all configurations. While starting
slightly lower (69% compared to 73%) than naive Bayes, it outperforms the supervised
approach already when the labeled training data is cut in half. The recognition perfor-
mance of multiple eigenspaces stays stable until the last configuration, in which the labels
are reduced to one sixteenth of the original amount. This clearly shows the advantages of
this unsupervised and generative approach. The information it extracts from the unlabeled
training data helps it to maintain its classification performance as the amount of labeled
data is reduced. More importantly, this implies that the multiple eigenspace approach can
help to reduce the amount of supervision — and thus the amount of manual work by users
— which is required for activity recognition. In contrast, since the supervised approach
can only learn from labeled data, it is strongly dependent on annotation, as can be seen
from the performance drop in Figure 5.3.

The third curve of the plots in figure 5.3 shows the performance of the integrated
approach. Clearly, the overall performance when using 80% training data is far above
the performance of the two other approaches. Even though the performance drops as the
amount of training data is reduced, the performance using 20% of training data is still
clearly above the performances of both approaches. Only when the amount of training
data is further reduced to 10% the performance gain using SVM training becomes negli-
gible. When using only 5% of the training data the performance stays behind the multiple
eigenspace approach as the SVM training aims to generalize from the rather limited set
of training samples.

Overall we can make three observations. First, the use of multiple eigenspaces can
reduce the effort of supervision to very small amounts of training data while still pre-
serving a good and constant level of recognition performance. Second, the integration of
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Figure 5.3: Comparison of Recognition Performance of the three approaches (Naive
Bayes, Multiple Eigenspaces, and Multiple Eigenspace combined with Support Vector
Machines)

SVM-training on subsets of the training data can increase the overall recognition perfor-
mance substantially assuming a sufficient amount of labeling data. Third, when labeling
and amount of supervision are further reduced, the discriminant nature of SVM learning
may not help anymore or can even hurt recognition performance.

5.5 Conclusion

This chapter has introduced an integrated approach combining the advantages of gen-
erative modeling and discriminant learning. More specifically the generative approach
of multiple eigenspaces was used to obtain a low-dimensional representation of sensor
data in a fully unsupervised fashion. In particular the approach allows to model effec-
tively different activities without prior training, user annotation, or any information about
the number of activities involved. Support vectors machines are then trained on labeled
subsets of the training data to boost the recognition accuracy of the purely unsupervised
approach of multiple eigenspaces.

Our experiments yielded three important results. First, the experiments showed that
the multiple eigenspace approach can achieve a comparable performance to a baseline
system using naive Bayes classification. Second, we showed that the performance of
the multiple eigenspace approach remains high even when the amount of supervision is
reduced substantially from 80% to only 5%. Third, the experiments showed that the com-
bined approach does indeed increase recognition performance substantially w.r.t. both
the purely unsupervised approach of multiple eigenspaces and the baseline recognition
system based on naive Bayes.
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Interestingly, the experiments and the discussion of the previous section also suggest
that neither the multiple eigenspace approach nor the discriminant learning approach are
sufficient. While the generative eigenspace approach obtains a constant performance even
in the presence of decreased supervision, the discriminant learning using SVMs clearly
obtains the best recognition performance when enough training data is available. How-
ever, when the amount of training data is reduced the performance gain is negligible and
might be even reversed. In our opinion, these observations support the claim that in order
to obtain scalable activity recognition for real world scenarios we should aim to optimally
combine generative with discriminant models.



Towards Recognition of High-Level
Activities

High-level and longer-term activity recognition has great potentials in areas such as medi-
cal diagnosis and human behavior modeling. However, current research in activity recog-
nition mostly focuses on low-level and short-term activities. In this chapter we make a
first step towards recognition of high-level activities as they occur in daily life. We use
a realistic 10h data set to analyze the performance of four different algorithms for the
recognition of both low- and high-level activities. Here we focus on simple features and
computationally efficient algorithms as this facilitates the embedding and deployment of
the approach in real-world scenarios. While preliminary, the experimental results suggest
that the recognition of high-level activities can be achieved with the same algorithms as
the recognition of low-level activities.

6.1 Introduction

There are various reasons why only a few researchers have worked on longer-term, com-
plex and high-level activities (with some notable exceptions, as discussed in Section
2.4.1). For example, it is often argued that the recognition of low-level activities is a
prerequisite to recognize more complex and high-level activities. Besides being tedious
and time-consuming, the recording of high-level activities is a non-trivial task, as the data
should be as realistic and representative as possible. Thus, fundamental problems such as
the inherent difficulties and the large variability as well as more practical reasons seem
to have prevented most researchers to address the recognition of complex and high-level
activities.

The explicit goal of the research presented in this chapter is to enable the recogni-
tion of longer-term and high-level activities. Therefore, an essential first step for us was
to record an interesting and realistic dataset of high-level activities. In this chapter we
describe this dataset and compare four algorithms both for the recognition of low-level
activities as well as high-level activities. For each of the algorithms, we analyze and dis-
cuss different parameters such as feature length and sensor placement. The results suggest

67
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that the recognition of high-level activities may be achievable with the same algorithms
as for low-level activities. In particular, our results indicate that recognition of high-level
activities can be achieved using features computed from raw sensor data alone, without
building up any intermediate representation such as a grammar of low-level activities.

The main contributions presented in this chapter are as follows. First, the results of
our experiments suggest that today’s activity recognition algorithms are quite capable to
address the problem of high-level activity recognition. Second, we record and provide an
interesting and realistic dataset of high-level activities which is available from the authors
on request. Third, we analyze and compare different algorithms for the recognition of
low-level and high-level activities. Fourth, we systematically analyze important parame-
ters such as sensor placement, feature length and classification window.

The chapter is structured as follows. In the next section we introduce the dataset that
we recorded and the hardware we used for our experiments. Section 6.3 presents the
algorithms we use for recognition of both high- and low-level activities. Sections 6.4
and 6.5 report on the results for low- and high-level activities, respectively. Section 6.6
presents the summary and conclusion.

6.2 Experimental Setup

An important first step towards the recognition of high-level activities is a realistic and
representative recording of sensor-data. To this end we formulated four requirements and
considerations as the basis of our data recording. First, as the primary aim was the recog-
nition of high-level activities, we explicitly started with the recording of such activities
and later defined, named and annotated low-level activities that were performed during
these high-level activities. As we will see below, this leads to quite a different set of
low-level activities than one may obtain when starting from low-level activities. Second,
the recording should be as realistic as possible so that the activities should be performed
"in the field" — that is in an unconstrained and natural setting — and not in a laboratory or
staged setting. Third, the usefulness and the usability of high-level activity recognition
strongly depends on the price and form-factor of the final device. Therefore we decided
to keep the algorithms, features and the sensor-platform as simple and power-efficient as
possible so that the embedding into a simple self-contained device is feasible in the fu-
ture. Forth, we decided to start with the recording of data for a single user, as our primary
aim was to analyze and show the feasibility of high-level activity recognition first. Even
though that might seem like a limitation, we rather expect that the execution of high-level
activities varies greatly between individuals so that one might need to use a personalized
device.

One requirement formulated above was to base our recognition on simple sensors
and easy-to-compute features which is why we decided to use the mean and variance
of acceleration signals. Accelerometers are especially appealing in this context, since
they are cheap and can be increasingly found in everyday objects such as mobile phones,
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cameras, wrist watches and even shoes. The use of simple features for recognition would
allow the computation to take place online on a miniature mobile device without draining
the battery or slowing down other applications. Computing the features on the device and
discarding the raw signals can also help to save memory and allow for longer recordings.

6.2.1 Dataset

During the recordings the user was wearing three sensors. One sensor was attached to the
right wrist, one to the righthand side of the hip, and one to the right thigh, as illustrated in
Figure 6.3(a). The ground truth labels were mainly added and edited offline, using a sepa-
rate video recording (from a passively mounted video-camera used during the housework
and morning scenes) and some optional online annotations from a PDA.

The dataset consists of three different high-level activities or scenes performed by
one user. The first scene consists of a typical morning routine one might perform before
going to work, which, for one of the recordings, looked as follows (see Figure 6.1 for
the corresponding ground truth annotation): after some time of sleeping, the user gets
up, walks to the bathroom, uses the toilet and brushes his teeth. After having breakfast,
he leaves the house and drives to work by car. The second scene is a shopping scenario
which might look as follows: after working at the computer for some time, the user walks
to his car and drives to a nearby shopping center, buys groceries and heads back in his car.
In the third scene, the user does some housework after getting up. He might first brush
his teeth and have some breakfast, may then wash the dishes, vacuum his apartment and
iron some clothes, and eventually walk out of the house.

Each scene was recorded four times, on different days and in a natural environment,
i.e. at the user’s home and in a nearby supermarket. The scenes were loosely defined
by the fact that each activity should at least occur once in each instance. The length of
the scenes varies between 40 and 80 minutes; the total length of the data is 621 minutes.
Figure 6.1 shows the ground truth for one instance of each scene, and Figure 6.2 gives an
overview of all activities. The scenes consist of 15 different activities (plus one garbage
class for unlabeled data), some of which are shared between two or three scenes. For
evaluation, we created four sets, each consisting of three concatenated scenes. We used
these sets to perform a 4-fold leave-one-out crossvalidation on the data.

6.2.2 Hardware

Figure 6.3(b) shows the sensor platform that was used for recording the data for our
experiments [Van Laerhoven ef al. 2006]. It features a 2D accelerometer (ADXL202JE)
and nine binary tilt switches for sensing motion and orientation of the user. Besides giving
a coarse sense of orientation, the tilt switches can be used to control the system’s transition
to and from a low-power mode. In low-power mode, the accelerometer is switched off
and the frequency of the micro controller (16F628A) reduced from 4 MHz to 48 kHz,
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Figure 6.1: Ground truth for recordings of the three scenes Housework, Morning and
Shopping. Each scene was performed four times by the user, here we show only one
instance of each scene.

which can extend the battery lifetime of the platform from about one day to one month.
The sensor board is stacked onto a BSN node [Lo et al. 2005] with 512 kb of EEPROM
storage for logging sensor data, followed by a third board for the power supply.

6.2.3 Feature Computation

During recordings, the platform stores all sensor data on the EEPROM storage, from
which it can later be retrieved via an rs232 connection. We aimed for continuous record-
ings of several hours, and the limiting factor for our experiments was the size of the 512
kb on-board memory rather than battery lifetime. To save memory, we compute and store
only the mean and variance of the acceleration signal at 2 Hz and discard the raw (80
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Highlevel Activities Lowlevel Activities

a Preparing for Work 1 (unlabeled) 9 walking [a, b]

b Going Shopping 2 brushing teeth [a, c] 10 working at computer [b]

¢ Doing Housework 3 taking a shower [a] 11 waiting in line in a shop [b]
4 sitting [a] 12 strolling through a shop [b]
5 driving car [a, b] 13 hoovering [c]
6
7
8

eating at table [a,c] 14 ironing [c]
using the toilet [a] 15 preparing lunch [c]
sleeping [a] 16 washing the dishes [c]

Figure 6.2: Overview of the low- and high-level activities in the recorded dataset. Each
high-Ievel activity consists of a set of low-level activities, as indicated in brackets.
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Figure 6.3: Left: User wearing sensors on wrist, hip and thigh. Right: The sensor plat-
form, consisting of the power supply (bottom), the BSN node for logging (middle) and
the sensor board (top).

Hz) acceleration data. This allows us to record about five hours of sensor data on the
chip. (The current generation of the platform has a larger on-board memory and allows
for continuous recordings of several days or even weeks.)
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6.3 Algorithms

We use four different approaches for recognition of activities — three of them are based on
a discrete representation that we obtain by clustering the sensor data, and one approach
is based on training HMMs on continuous data. All approaches have in common that
they use the mean and variance of the acceleration signal over a sliding window as the
underlying features. These features are cheap to compute and are known to yield high
recognition rates in settings comparable to ours (e.g. [Bao and Intille 2004, Kern 2005,
Ravi er al. 2005, Huynh and Schiele 2006a] (see also Chapter 5)).

Related work has shown that it is possible to recognize movements or activities based
on low dimensional models learned in a semi- or unsupervised fashion (e.g., [Minnen er
al. 2006b, Huynh and Schiele 2006a] (see also Chapter 5)). Such models can also be
thought of as an alphabet of symbols, a vocabulary in which activities are formulated as
‘sentences’. Compositions of such sentences could later serve as a tool for recognizing
more abstract and high-level behavior. The first three of the following approaches is in-
spired by this idea, but as we do not assume that human motion follows a strict grammar,
we only consider histograms of symbols over intervals, without modeling their temporal
order. We use k-means clustering as a simple yet effective unsupervised method to map
features to a set of discrete symbols, i.e. to one of the k cluster centroids. We represent
each feature by the closest cluster centroid. As a result, the input data is transformed
into a one-dimensional sequence of cluster assignments. Based on this representation, we
employ three different learning methods which we describe in the following. The fourth
method is based on HMMs and uses a vector of mean and variance values as features.
Figure 6.4 gives a conceptual overview of the different representations used for recogni-
tion, and Figure 6.5 shows a real-world example. In the following we briefly outline the
four approaches we used.

Clustering + NN. As a baseline method, we cluster the training samples using k-means
and label each cluster with the activity that occurs most often among the training samples
belonging to the cluster. Classification is then performed by a nearest neighbor (NN)
classification using the cluster centroids, i.e. we assign to each test sample the label of the
closest cluster centroid. During experiments we vary the size of k and the length of the
window over which the features are computed.

Histograms + NN. In this approach, rather than using individual symbols as features,
we compute histograms of cluster assignments over a sliding window of the training se-
quence. Each histogram is labeled with the activity that occurs most often in the window
of samples that it covers. For evaluation, we perform a nearest neighbor (NN) classifica-
tion on the histograms computed from a test sequence.

Histograms + SVM. This approach is also based on histograms of cluster assignments.
However, instead of using a nearest neighbor classifier, we train a support vector machine
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Figure 6.4: Conceptual overview of the representations and classifiers we used for rec-
ognizing both high-level and low-level activities. The symbols are obtained by clustering
the continuous features — they basically correspond to clusters, each represented by the
cluster centroid. The histograms are computed from a sliding window over a stream of
symbols.

(SVM) using the histograms as features.

HMMs. The fourth approach is based on Hidden Markov Models (HMMs). HMMs
belong to the class of generative statistical signal models, and they have been successfully
used in activity recognition tasks before (e.g. [Oliver e al. 2002, Clarkson and Pentland
1999, Lester et al. 2005, Lukowicz et al. 2004]). They lend themselves to a hierarchical
classifier design, which makes them interesting candidates for modelling activities on
different levels of abstraction. For this approach we also use the mean and variance of
the acceleration signal over a sliding window as features. We then partition the data into
N equal parts and train a separate HMM on each part. We use left-right models with one
Gaussian per state, and we vary the number of states in our experiments. In order to assign
activity labels to the models, we use a sliding window over the features as observation
sequence, and compute the likelihood of the window for each of the N models. The model
with the highest likelihood is then assigned the label of the activity that occurs most often
in the window. Classification is performed similarly, i.e. by computing the likelihood of
each model over a sliding window starting at a certain sample, and subsequently assigning
to the sample the label of the model with the highest likelihood.
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Figure 6.5: Example of the different representations used for recognition. From top to
bottom: ground truth; features (mean & variance over 4 sec); cluster assignments (each
feature is assigned to one of k=100 clusters); histograms of cluster assignments (over
windows of 480 samples).

6.4 Low-level Activities

In this section we report on the performance of the above mentioned approaches with
respect to the fifteen low-level activities listed in Figure 6.2. As mentioned earlier, we
defined the low-level activities after the recording of the high-level activities. That way, a
somewhat obvious but important observation is that the definition of low-level activities
is not as well-defined as one might expect. E.g., for the following activities, it is not clear
if they belong to the same or to different low-level activities: walking down a corridor vs.
walking in a supermarket while collecting items; sitting in a car vs. sitting at a table while
eating vs. sitting on the toilet vs. sitting at a desk and working on a computer; etc. It
should be clear that this is not simply a question of a hierarchical and temporal decompo-
sition of concurrent activities, but rather an inherent difficulty linked to the context of the
particular activity (e.g. sitting on the toilet vs. sitting at a table). As a consequence, we
decided to define the low-level activities within each high-level activity as they occurred
within the context of the high-level activity. That way we have a range of activities which
occur across multiple high-level activities such as walking, eating at table and brushing
teeth and others which are more specific such as driving a car or strolling through a shop.

Based on these definitions of low-level activities, this section compares the recogni-
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Figure 6.6: Accuracy of classification for low-level activities; using assignments to clus-
ter centroids as features (left) vs. using histograms of such assignments in combination
with nearest neighbor classification (right).

tion performance of our four approaches. For each of the algorithms we also identify
and discuss suitable parameters such as the number of clusters, the length of the feature
window, and also appropriate on-body locations for the sensors.

Clustering + NN. Figure 6.6(a) shows the accuracy' for different numbers k of clusters
and different window lengths for the features. One can observe that values of k below 50
have a negative impact on the recognition performance. For values of kK >= 50, accuracy
lies roughly between 60% and 70%. The best result of 69,4% is obtained for k = 500 and
a feature length of 64 seconds. Surprisingly, the best results are obtained for relatively
long window lengths. Lengths between 16 and 256 seconds perform best, and there is
a visible drop in performance for shorter and longer window lengths. Figure 6.7 shows
the confusion matrix for the best parameter combination. One can clearly see that the
recognition performance varies strongly between the different activities. Seven of the 15
activities have recall or precision values above 70%, the best being sleeping (97.4/90.6),
working at the computer (89.9/78.5), walking (82.1/78.4) and driving car (79.7/88.8).
During four activities the user was sitting (sitting, driving car, eating at table, using the
toilet), and from Figure 6.7 one can see that these activities are often confused with each
other during classification.

Histograms + NN. Figure 6.6(b) shows the recognition results for the histogram-based
approach combined with a nearest neighbor classifier. We vary the number of clusters
and the length of the histogram windows (the windows are always shifted by 5 features
at a time). The underlying mean and variance features are computed over windows of 4

Iwe use the term accuracy to refer to the number of correctly classified samples divided by the number

of all samples
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Classified Activity
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16| Sum_Recall
1 unlabeled 1314 148 188 64 567 136 81 103 540 85 10 428 317 993 707 158 5839 22.5%)
2 brush teeth 146 1258 310 9 16 71 302 2 51] 2165 58.1%)
3 shower 83 249 1710 13 17 58 47 54 270 40 70| 2611  65.5%)
4 sit 287 4 6 684 424 168 267 5 68 19 49 7 26 19 2033  33.6%)
5 drive car 334 343 9743 301 84 26 62 73 10966 88.8%)
<| 6eat 192 5 21 127 938 4253 26 11 42 25 2 3 21 13| 5679 74.9%)|
§ 7 use toilet 83 14 46 41 324 106 224 7 14 16 12 53 4 944 23.7%)
'_; 8 sleep 260 14 21 45 116 34 7016 111 36 55 10 22| 7740 90.6%)
S| 9 walk 614 12 105 29 66 7 8988 1285 139 153 32 40| 11470 78.4%
O 10 work at comp. 99 3 22 52 35 15 36 26 1325 24 © 21 21 1688 78.5%)
O 11 stand at cashier 14 798 717 23 145 92 15| 1804 44.2%
12 walk in shop 193 14 37 7 2 836 297 3260 109 201 342 14| 5312 61.4%)
13 hoover 74 44 74 128 135 785 456 66 149 1911 41.1%)
14 iron 122 76 155 38 162 53 267 7009 438 263 8583 81.7%)
15 prep. lunch 331 4 2 20 14 37 349 49 499 731 95 2131 34.3%
16 wash dishes 240 29 54 13 11 3 37 23 350 255 2554 3569 71.6%
Sum| 4386 1871 2732 1375 12232 5066 721 7204 10945 1481 1323 6537 1867 10481 2780 3444| 74445
Precision| 30.0% 67.2% 62.6% 49.7% 79.7% 84.0% 31.1% 97.4% 82.1% 89.5% 60.3% 49.9% 42.0% 66.9% 26.3% 74.2%

Figure 6.7: Aggregate confusion matrix for the best parameter combination when using
cluster centroids as features. k = 500, mean & var computed over 64 seconds, shift = 0.5
seconds. Overall accuracy is 69%.

Classified Activity
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16| Sum Recall
1 unlabeled 79 79 24 7 4 34 50 53 10 208 11 66 625 12.6%
2 brush teeth 73 142 86 8 8 1 3] 59 380 37.4%)
3 shower 558 3] 561  99.5%)
4 sit 67 68 26 27 188  0.0%
5 drive car 2134 102 54 2290 93.2%
c| 6eat 10 13 104 1033 25 47 5 11 23] 1271 81.3%)
S| 7 use toilet 81 5) 71 28 26 10 13 234 11.1%
'_; 8 sleep 15 26 4 7 1498 7 1557  96.2%
S| 9walk 46 6 90 17 7 1632 18 303 10 69 3| 2201 74.1%
© [ 10 work at comp. 127 17 180 324 55.6%
O 11 stand at cashier 3 125 120 139 387 32.3%
12 walk in shop 23 52 60 886 75 1096 80.8%
13 hoover 10 365 8 10 21 414 88.2%
14 iron 10 10 1676 45 10 1751 95.7%
15 prep. lunch 8 68 17 30 5 30 53 13 14 156 109 503  31.0%)
16 wash dishes 12 17 6 14 6 715 770 92.9%)
Sum| 223 338 712 68 2623 1121 215 1566 1926 198 215 1480 409 1975 474 1009| 14552
Precision| 35.4% 42.0% 78.4% 0.0% 81.4% 92.1% 12.1% 95.7% 84.7% 90.9% 58.1% 59.9% 89.2% 84.9% 32.9% 70.9%)

Figure 6.8: Aggregate confusion matrix for the best parameter combination when using
histograms of symbols (cluster centroids) as features. k = 100, histogram windows over
480 features (about 4 min.) shifted by 5 features each, mean & var computed over 4 sec.,
shift = 0.5 seconds. Overall accuracy is 77%.

seconds with a shift of 0.5 seconds (in contrast to the clustering approach, we observed
that small feature windows performed better here). The highest accuracy of 77% is ob-
tained for kK = 100 and a histogram window of 480 samples, covering about 4 minutes of
data. For larger histogram windows the accuracy visibly decreases. Similarly to the clus-
tering results, values of k below 50 lead to a sharp drop in performance, implying that too
much information is lost from the discretization. Figure 6.8 shows the confusion matrix
for the best parameter settings. Except for the activities taking a shower, sitting, using
the toilet and washing the dishes, the precision increases for all activities compared to the
previous approach. Notably, the confusion between the activities ironing and vacuuming
is much lower in this approach. The overall gain in accuracy of 8% indicates that the
use of histograms of symbols rather than individual symbols does indeed help to improve
recognition performance.
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Figure 6.9: Accuracy of classification for low-level activities; using histograms of cluster
assignments in combination with an SVM (left) vs. using HMMs (right).

Histograms + SVM. When using an SVM for classification in combination with the
histogram features, the recognition results can be slightly improved compared to the near-
est neighbor approach. Figure 6.9(a) shows the accuracy for different values of k and dif-
ferent window lengths for the histograms. The best result of 78% is obtained for kK = 50
and a histogram window of 480 samples, covering about 4 minutes of data. One can ob-
serve that accuracy decreases with higher number of clusters and smaller window lengths.
For window lengths between 240 and 960 samples, corresponding to about 2 to 8 minutes
of data, and values of k between 50 and 200, we obtain the highest accuracies.

HMMs. Figure 6.9(b) shows recognition results for the HMM approach. We vary the
feature length and the number of models N; in this particular example, the number of
states is fixed to 8, and the observation window for classification covers 16 samples. The
number of models N directly affects the length of data that each HMM models, since
the data is equally partitioned into N parts. Thus, N is inversely related to the length of
the histogram windows of the previous approaches. From the plot one can observe that
using less than 200 models (i.e. each model sees about 2.5 min of data or more) leads
to a visible decrease in performance. We obtained the best result of 67% for N = 200
models and a feature length of 64 sec, an observation length of 16 and models with 32
states. When varying the number of states we found that they only marginally effected
the results. Figure 6.10 shows the confusion matrix for the best parameter combination.
Overall, results of the HMM approach suggest that the temporal aspect — at least for the
features we employed — is not dominant enough to allow for higher recognition rates.

Sensor placement. The results so far were based on the data of all three sensors the
user was wearing on wrist, hip and thigh. It turns out that using only subsets of these
sensors for recognition reveals some interesting relations between the placement of sen-
sors and the recognition of individual activities. For instance, we found that the overall
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Classified Activity
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 Sum_Recall
1 unlabeled 288 337 654 849 323 497 533 49 879 458 65 833 103 485 151 98| 6602  4.4%]
2 brush teeth 1565 32 77 21 32 46 20 32 159 183 2167 72.2%]
3 hoover 75 1070 523 33 32 120 50 1903  56.2%|
4 iron 182 6732 1211 41 117 166 130 8579  78.5%)
5 prep. lunch 365 927 105 27 131 162 66 35 130 33 54 33 2068 44.8%)
< | 6sit 10 81 61 142 577 84 13 273 212 33 257 196] 1939 29.8%|
5| 7eat 20 43 70 80 3615 130 252 1327 33 19 32 5621 64.3%)
'_; 8 sleep 533 16 11 283 29 6638 56 33 127 65| 7791 85.2%]
S| 9walk 33 130 196 145 7 463 310 8399 171 493 13 903 33| 11296 74.4%
O | 10 wash dishes 9 167 98 69 206 2 2740 262 3553 77.1%)
O |11 work at comp. 65 24 178 1307 33 86 1693 77.2%
12 drive car 99 524 440 33 9670 33 98| 10897 88.7%]
13 stand at 99 200 1285 212 1796 71.5%
14 walk in shop 98 197 66 862 68 429 3581 5301  67.6%)
15 shower 254 205 130 1982 2571 T7.1%)
16 use toilet 20 16 25 206 328 28 2 295 920  0.0%)
Sum| 983 2581 2154 9192 3207 2616 5758 6700 11635 4375 1537 13138 1960 5525 2781 555 74697
Precision| 29.3% 60.6% 49.7% 73.2% 28.9% 22.1% 62.8% 99.1% 72.2% 62.6% 85.0% 73.6% 65.6% 64.8% 71.3% 0.0%

Figure 6.10: Aggregate confusion matrix for the best parameter combination when using
the HMM-based approach. The parameters were: window length for features = 64 sec.,
200 models, 32 states per model, observation length = 16. Overall accuracy is 67.4%.

accuracy of the clustering approach slightly improved from 69% to 70% when we used
only two sensors, namely the sensors on wrist and thigh. These results are consistent
with the findings from [Bao and Intille 2004], who also found that when using only two
sensor locations, wrist and thigh are the most suitable locations. Using these locations
even leads to better results when recognizing the activities brushing teeth, driving car,
preparing lunch and washing dishes. When only using the wrist sensor, performance for
brushing teeth and taking a shower improves, likely because these activities are mainly
characterized by hand and arm movements. For sleeping and walking, using only the hip
sensor already yields precision and recall values up to 95%.

6.4.1 Discussion

Figure 6.11 shows a summary table comparing the best results of the four approaches.
Generally, the approach Histograms + SVM achieves the highest accuracy of 79.1%. For
most activities, the use of histograms instead of single cluster assignments as features
leads to better precision and recall values. However, there are two stationary (sitting, us-
ing the toilet) and two dynamic activities (brushing teeth, walking) in which the use of
single cluster assignments yields higher results in either precision, recall or both. The
HMM approach achieves the lowest accuracy of 67.4%, slightly less than the clustering
approach. In summary, we conclude that using histograms of symbols as features and
combining them with a strong classifier is a promising and competitive approach for rec-
ognizing the type of daily activities we recorded in our study.

It is worth noting that the overall recognition scores seem low compared to the pub-
lished state-of-the-art. However, in contrast to most other recordings and as discussed
above, we explicitly defined the low-level activities after the recording of the high-level
activities, and therefore both the larger variability within single low-level activities (such
as walking) and the high similarity between different low-activities (such as walking and
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Clusters/NN Histograms/NN | Histograms/SVM HMM
Activity P r P T p r p r
(unlabeled) 30.0 22.5 354 12.6 7.9 3.0 29.3 44
brush teeth 67.2 58.1 42.0 37.4 23.0 21.1 60.6 72.2
shower 62.6 65.5 78.4 99.5 86.7 91.8 49.7 56.2
sit 49.7 33.6 0.0 0.0 0.0 0.0 73.2 78.5
drive car 79.7 88.8 81.4 93.2 86.9 95.4 28.9 44.8
eat 84.0 74.9 92.1 81.3 823 87.3 22.1 29.8
use toilet 31.1 23.7 12.1 11.1 15.0 9.4 62.8 64.3
sleep 97.4 90.6 95.7 96.2 91.2 97.2 99.1 85.2
walk 82.1 78.4 84.7 74.1 79.5 77.6 72.2 74.4
work at computer 89.5 78.5 90.9 55.6 93.3 94.8 62.6 77.1
stand at cashier 60.3 442 58.1 323 75.9 47.3 85.0 77.2
walk in shop 49.9 61.4 59.9 80.8 70.7 80.1 73.6 88.7
vacuum 42.0 41.1 89.2 88.2 98.3 82.6 65.6 71.5
iron 66.9 81.7 84.9 95.7 89.0 95.9 64.8 67.6
prep. lunch 26.3 343 32.9 31.0 45.7 54.3 71.3 77.1
wash dishes 74.2 71.6 70.9 92.9 79.0 89.9 0.0 0.0
Mean 62.0 59.3 63.0 61.4 64.0 64.2 57.5 60.6
Accuracy 69.4 77.0 79.1 67.4

Figure 6.11: Summary of the results for low-level activities. Each column shows the
precision (p) and recall (r) values for each activity, as well as the accuracy, i.e. the number
of correctly classified samples divided by all samples. The highest values in each row are
highlighted.

walking through shop) pose a more challenging recognition problem than is usually ad-
dressed.

6.5 High-level Activities

In this section we report on how well our proposed approaches can deal with the recogni-
tion of high-level scenes comprising a collection of low-level activities. More specifically,
we evaluate how well our algorithms can classify the three different scenes Morning,
Housework, and Shopping. Each scene has a length of at least 40 minutes and consists
of at least six different activities. The evaluation was performed in the same fashion as
for the low-level activities: we constructed four datasets, each containing one instance of
each of the three scenes, and then performed a leave-one-out crossvalidation.

Clustering + NN. Figure 6.12(a) shows the accuracy for different numbers of clusters
and different window lengths for computing mean and variance of the signal. As for the
low-level activities, one can observe that for values of k below 50 performance decreases
rapidly. In terms of feature windows, there is a visible tendency that longer window
lengths lead to a better performance. For the parameter values that we sampled, the best
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Figure 6.12: Accuracy of classification for high-level activities.

Classification (Clusters + NN) Classification (Histograms + NN)
preparing going doing preparing going doing
for work  shopping housework |Sum Recall |for work shopping housework [Sum Recall
preparing for work 7652 921 916] 9489 80.6% 1568 336 72[ 1976 79.4%
'6 going shopping 1030 6683 1310 9023 74.1%) 86 1669 101 1856 89.9%)
doing housework 741 263 14764| 15768 93.6% 354 224 2651 3229 82.1%)
Sum 9423 7867 16990| 34280 2008 2229 2824| 7061
Precision 81.2% 84.9% 86.9% 78.1% 74.9% 93.9%
Classification (Histograms + SVM) [Sum  Recall Classification (HMM) Sum Recall
preparing for work 1383 132 0 1515 91.3%) 8220 753 515 9488 86.6%
'6 going shopping 62 1359 126 1547 87.8%) 1042 4962 930| 6934 71.6%
doing housework 14 143 2612] 2769 94.3%) 1156 536 7334| 9026 81.3%
Sum 1459 1634 2738| 5831 10418 6251 8779| 25448
Precision 94.8% 83.2% 95.4%) 78.9% 79.4% 83.5%

Figure 6.13: Aggregate confusion matrices for the best parameter combinations of the
four approaches for recognizing high-level activities.

result of 84.9% was obtained for £k = 50 and a feature window of 768 sec., i.e. about
13 min. (We comment on the feature length below in the paragraph ‘Sensor Placement’.)
The confusion matrix for this configuration is shown in Figure 6.13 (upper left). Precision
and recall range between 74% and 94%.
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Histograms + NN. In this experiment, as for the low-level activities, we vary the num-
ber of clusters and the length of the histogram. The results can be seen in Figure 6.12(b).
The mean and variance features are computed over 4 sec. windows with a shift of 1 sec-
ond. The best results are obtained for values of k between 50 and 500, and histogram
windows between 512 and 2048 samples, i.e. between about 8 and 32 minutes. Figure
6.13 (upper right) shows the confusion matrix for k = 500 and a histogram window of 512
samples; the accuracy for this run was 83.4%, which is slightly lower than for the clus-
tering approach. In terms of precision and confusion there is no clear difference to the
clustering approach. However, the results improve substantially when using an SVM for
classification instead of a nearest neighbor classifier, as is described in the next section.

Histograms + SVM. Figure 6.12(c) shows the accuracy for different values of k and
different window lengths for the histograms when using an SVM as classifier. The best
results are obtained for histogram windows between 1280 and 2048 samples, i.e. between
20 and 32 min. Interestingly, the number of clusters for discretization only has a minimal
influence on the recognition performance, the dominating parameter is the length of the
histogram window. Even when using only k = 10 clusters, the accuracy stays above 90%.
Figure 6.13 (lower left) shows the confusion matrix for the best result of 91.8% accuracy,
which is an improvement of about 7% compared to using the nearest neighbor classifier
as described in the previous paragraph.

HMMs. Figure 6.12(d) shows the recognition results for the HMM approach. As for the
low-level activities, we vary the feature length and the number of models N. The number
of states is fixed to s = 2 (we did vary the number of states but found only small changes
in performance), and the length of the observation window for each HMM is set to 16
samples. From the figure one can observe that values of N below 200 lead to a decrease
in performance. The best results of slightly above 80% are obtained for feature lengths
above 256 seconds (4 min) and N = 200 models or more. Figure 6.13 (lower right) shows
the confusion matrix for N = 200 and a feature length of 768 seconds.

Sensor Placement. We also investigated the influence that different sensor locations
have on the recognition of high-level activities. Figure 6.14 shows the differences in
performance when applying the clustering approach to subsets of sensors. Figure 6.14(a)
shows the results for the wrist sensor. One can observe that for this sensor, the size of
the feature window strongly influences the recognition rate — there is a distinct peak for
relatively large windows between 512 and 1024 seconds. Obviously, for shorter windows
the wrist movements are not discriminative enough for recognition. This might be due
to the fact that the three scenes share some of the low-level activities, and that of these,
many involve similar wrist movements, as for example brushing teeth or showering. The
results for hip (Figure 6.14(b)) and thigh (Figure 6.14(c)) sensor do not exhibit such a
clear tendency towards specific window lengths. Thus it appears that it is mainly the wrist
sensor that is responsible for the good performance of relatively long windows when
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Figure 6.14: Clustering + NN - based recognition accuracy of high-level activities for
subsets of sensor locations. The best values of each combination are highlighted.

using all three sensors. The result for the hip sensor indicates that the performance at
this location is more influenced by the number of clusters than the feature length; the best
results are obtained for k = 100. Similarly as for the low-level activities, the combination
of wrist and thigh sensor also performs very well for high level activities. For £k = 100
and a feature length of 1024, the accuracy is 82%), i.e. only 3% worse than when using all

three sensors.
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Clusters + NN Histograms + NN Histograms + SVM HMM
Scene p T p T p r p r
Preparing for Work 81.2 80.6 78.1 79.4 94.4 91.3 78.9 86.6
Going Shopping 84.9 74.1 74.9 89.9 83.2 87.8 79.4 71.6
Doing Housework 86.9 93.6 93.9 82.1 95.4 94.3 83.5 81.3
Mean 84.4 82.2 82.3 83.8 91.1 91.2 80.6 79.3
Accuracy 84.9 83.4 91.8 80.6

Figure 6.15: Summary of the results for high-level activities. The columns show the
precision (p) and recall (r) values for each activity, as well as the accuracy.

Parameter NN + Clusters NN + Histograms  SVM + Histograms HMM
Window Length of Features > 10 min 4 sec 4 sec >4 sec
# Clusters >=50 >=50 >=50
Window Length of Histograms 8-32 min 20-32 min
# States 2
Observation Length 16

Figure 6.16: Parameters that we found worked well for recognizing high-level activities,
using our four different approaches.

6.5.1 Discussion

Figure 6.16 shows a summary table comparing the best results of the four approaches. As
for the low-level activities, one observes that the approach Histograms + SVM achieves
the highest accuracy, in this case 91.8%. Combining the histogram features with an SVM
instead of a nearest neighbor classifier leads to higher precision and recall values for all
activities. Generally, the accuracy of all four approaches is over 80%, which is signif-
icantly higher than the chance level of about 33%. Even though the results might not
generalize due to the small number of high-level activities in our set, we find that the
high recognition rates are remarkable, considering the use of simple and easy-to-compute
features in combination with a relatively large and challenging dataset.

6.6 Conclusion

The main goal of this chapter was to investigate how well current approaches in activity
recognition can be applied to the recognition of high-level activities, which happen on
the order of hours rather than minutes and consist of a diverse set of small scale activi-
ties. To this end, we recorded a naturalistic dataset with a user wearing three sensors on
wrist, hip and thigh performing several instances of three different high-level scenes. We
evaluated four different algorithms with respect to their ability to recognize both the low-
and high-level activities contained in the dataset. One important aim of this research was
to investigate to which extent current approaches for recognition of low-level activities
can be directly applied to the recognition of high-level activities — i.e. using the same
simple features without adding any intermediate levels of representation. We believe that
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in the future such an approach would allow for scalable and efficient activity recognition
systems based on simple sensors.

The results indicate that our algorithms can achieve competitive recognition rates for
many of the low-level activities. The best results of slightly below 80% were achieved
when using histograms of cluster assignments as features, combined with a support vector
machine for classification. We investigated different window lengths and numbers of
clusters and found that mapping the data to 50 clusters already leads to good results. In
terms of sensor placement, using only two sensors at wrist and thigh resulted in equal or
even better rates than using all three sensors.

When classifiying high-level activites, we achieve a recognition accuracy of up to
92%, which is clearly above the chance level of about 33%. We achieve these results
with the same algorithms that we used for the low-level activities, merely by changing
parameters such as the feature length and classification window. The best results were
again obtained by the histogram-based approach in combination with an SVM. For all
our approaches we use simple mean and variance features derived from accelerometer
readings at 2 Hz. Considering the relatively simple sensors and features, as well as the
challenging dataset, we find that the results for the high-level activities are surprisingly
good.

We conclude that recognizing activities on such scales using only small and unobtru-
sive body-worn accelerometers is a viable path worth pursuing. Yet we are aware that the
work presented in this chapter is but a first step towards recognition of high-level activi-
ties, and that more sophisticated models might yield better results. An obvious extension
would be a hierarchical approach, using the outcome of the low-level classification as ba-
sis for the high-level inference. The next chapter explores a possible step in this direction,
namely by using topic models to discover high-level structure in low-level activities.



Discovery of Daily Routines

In the last chapter we have seen that it is feasible in principle to use information from
wearable sensors to recognize high-level structure in human activities. In this chapter
we continue our work in this direction, by introducing a novel approach for modeling
and discovering daily routines of a user from on-body sensor data. Inspired by machine
learning methods from the text processing community, we convert a stream of sensor
data into a series of documents consisting of sets of discrete labels. We then search for
common topics or activity patterns in this data, using Latent Dirichlet Allocation. We
show on real-world data that the discovered activity patterns correspond to high-level
behavior of the user, are highly correlated with daily routines such as commuting, office
work or dinner routine, and can be learned without any user annotation.

7.1 Introduction

Activity recognition has experienced increased attention over the years due to its impor-
tance to context aware computing in general and to its usefulness for application domains
ranging from medical diagnosis over elderly care to human behavior modeling. This has
resulted in various successful approaches that are capable to recognize activities such as
walking, biking, sitting, eating or vacuuming. The majority of research has focused on
activities that we termed low-level activities in the last chapter and that may be described
and thus recognized by their respective body movements (such as walking and biking),
body posture (such as sitting and eating), or object use (such as vacuuming). For many ap-
plications, however, the recognition of such simple activities is not enough. For instance
in the case of elderly care it is interesting to recognize daily routines such as shopping
or hygiene or in the case of office workers it is interesting to recognize routines such as
attending a meeting, having lunch or commuting. What makes the recognition of such
routines more complex is that they are typically composed of several activities and that
the composition of activities has a large variability depending on factors such as time,
location and individual.

This work introduces a novel approach to model and recognize daily routines such
as commuting or office work from wearable sensors. For this we propose to leverage

85
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the power of probabilistic topic models 1) to automatically extract activity patterns from
sensor data and 2) to enable the recognition of daily routines as a composition of such
activity patterns. This chapter shows that the novel approach can be applied both to an-
notated activity data as well as to the sensor data directly in an unsupervised fashion.
When applied to annotated activity data, the automatically extracted activity pattern of-
ten correspond to daily routines. When applied to sensor data, the activity patterns allow
recognition of daily routines with high accuracy while requiring only minimal user anno-
tation. Therefore we argue that our approach is well suited both to minimize the amount
of user annotation and to enable scalability to long-term recordings of activities.

The main contributions of this chapter are threefold. First, we propose a new method
to recognize daily routines as a probabilistic combination of activity patterns. Second,
we show that the use of probabilistic topic models enables the automatic discovery of
the underlying activity patterns. And third, we report experimental results that show the
applicability and the power of the approach to model and recognize daily routines even
without user annotation.

The chapter is structured as follows. Next, we will motivate our approach and demon-
strate its potential on a set of activity labels covering seven days of unscripted and real-
world activity data. We will see that on the ideal set of ground truth labels, our method can
model and identify activity patterns that correspond to high-level structure in the person’s
daily life. In Sections 7.2 and 7.3 we describe the technical details of our approach, and
introduce the dataset that we used for evaluation. After that, in we introduce two differ-
ent methods for extracting activity patterns from previously unseen sensor data: The first
method (Section 7.4) uses supervised learning to assign activity labels to the sensor data.
These labels are then used to identify activity patterns in an unsupervised fashion. The
second method (Section 7.5) is completely unsupervised and uses clustering to generate
a vocabulary of labels, which are then used for pattern extraction. We conclude with a
summary and outlook.

7.2 Daily Routine Modeling using Topic Models

The activities we perform in our daily lives can be segmented and characterized on dif-
ferent levels of granularity. Which level to choose depends on the concrete application
at hand, but there is evidence that we humans tend to structure and name these levels in
a hierarchical fashion, and that at the lower and more fine-grained levels the structure is
aligned with physical properties of the activities, such as motion and posture [Zacks and
Tversky 2001]. Research in activity recognition exploits this fact by automatically nam-
ing the user’s activity, based on low-level sensor data such as the acceleration of different
parts of the body.

For many types of activities it is already sufficient to observe a small window of sen-
sor data — usually in the order of seconds — to classify them with high confidence. The
upper part of Fig. 7.1 shows a sequence of such activities as they were performed by a
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Figure 7.1: Top: Illustration of our approach on ground truth labels of activities. Note
that the vertical high-level annotations (commuting, working, etc.) were not given to
the algorithm. Lower Left: The matrix shows the contents of four out of ten discovered
activity patterns. Lower Right: Inferred activations of the discovered activity patterns
during the course of the day (e.g, the pattern in the third column is active during lunch
time). Note the high correlation between these activations and the user annotated daily
routines in the upper part, suggesting that these activations can be used to model daily

routines.

subject over the course of one day. If we were to further structure the activities the subject
performed on this day, a natural approach would be to group them into routines such as
commuting, office work, lunch routine or dinner routine. Such routines however cannot
be identified from their local physical structure alone. What makes their recognition more
complex is that they 1) are composed of variable patterns of multiple activities 2) range
over longer periods of time, and 3) often vary significantly between instances. A model
for recognizing such routines should be able to capture such facts as that office work
“mostly consists of sitting”, but “may (or may not) contain small amounts of using the
toilet, or discussions at the whiteboard”; or that commuting “mostly consists of driving
car, but usually contains short walking instances as well”.

It turns out that a family of probabilistic models, commonly referred to as topic mod-
els, is well suited for this kind of task. Before giving more details about how to use and



88 Chapter 7. Discovery of Daily Routines

infer topic models we first give an intuitive example what topic models can achieve when
applied to activity data.

The lower part of Fig. 7.1 illustrates the result of our approach when applied to seven
days of ground truth activity labels, including the sequence shown in the upper part of
the figure. The columns of the matrix on the lower left represent four out of 10 different
activity patterns or topics that were automatically identified by the method. Intuitively,
each activity has a probability of occurring in the pattern, indicated by the color of the
matrix cell. E.g., the third pattern (blue) is most likely to contain the activities walking
freely and having lunch, and also - but slightly less - likely to contain picking up cafeteria
food, sitting at desk and the unlabeled class. Similarly, the fourth pattern (red) is likely to
contain having dinner, washing dishes and the unlabeled class.

For each of these activity patterns the method is able to tell how much each pattern
is activated at each point in time. This is shown in the plot on the lower right, in which
we plotted the activations of each of the 10 topics for the day shown in the upper part.
One can observe that the third pattern (blue) is most active around lunchtime, and that
the fourth (red) is active around dinner time. What makes this result remarkable is that
no supervision was needed to infer both the activity patterns and their activations over
the course of the day. The topic model essentially discovered these activity patterns in a
entirely unsupervised way. In this particular case the activations of these activity patterns
are highly correlated with the daily routines of the person.

While in this particular example the activity patterns and the daily routines have been
discovered in an unsupervised way, they required as input the activity annotations from
the user. While this shows the principle applicability of topic models to model daily
routines, it is clearly desirable to avoid the time-consuming and error-prone task of manual
annotation. Later in the experimental sections we show that topic models can be applied
to activity recognition results as well as to sensor data directly. In the latter case no
user annotation is required whatsoever and still the discovered daily routines have a high
correlation with the user-annotated daily routines.

7.2.1 Topic Models

Topic models stem from the text processing community [Hofmann 2001, Blei ez al. 2003].
They regard a document - e.g. a scientific paper - as a collection of words, discarding all
positional information. This is called a “bag-of-words"-representation. As single words
capture a substantial amount of information on their own, this simplification has shown to
produce good results in applications such as text classification. Assume, for example, an
author wants to write a UbiComp paper that covers the three topics “HCI”, “Elderly Care”
and “Context-Aware Computing”. Writing this paper then is essentially picking N times
a topic from his list of chosen topics and then picking a word appropriate for the topic.
Therefore he uses a probability distribution that tells which words are likely to be used
for which topic. Different topics might share certain words, which means that both topics
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assign a high probability to them. This process yields a document in the "bag-of-words"
representation with N words.

Most interestingly for the purpose of the work presented in this chapter, topic models
allow to infer the inherent topics from an appropriate corpus of documents. E.g. when ap-
plied to the corpus of all UbiComp papers one expects that topics such as “HCI”, “Elderly
Care”, and “Context-Aware Computing” (among many other topics) can be discovered
automatically without any user annotation or intervention. To illustrate how this can be
achieved, we describe the process of writing the documents in a bit more formal way. As
mentioned before, the author of document d picks a set of topics. Assuming that he puts
different emphasis on the different topics, we model the mixture of topics as (multino-
mial) probability distribution p(z|d) over topics z. Similarly, the importance of each word
for each topic z is also modeled as a (multinomial) probability distribution p(w|z) over
words w of a vocabulary. Given these two distributions, we can compute the probability
of a word w occurring in document d:

T
pwld) =Y p(wlz)p(z|d), (7.1)

z=1

assuming that there are T topics the documents - e.g. all UbiComp papers - are deal-
ing with. This probability distribution p(w|d) doesn’t include any notion of topics any
more and in fact can be estimated by simple counting of the words in each document.
Having many documents, we observe a data matrix of observed p(w|d) as depicted on the
left hand side of the equation in Fig. 7.2. According to Equation 7.1 (which is equivalent
to the described process of writing the paper), the data matrix can be reconstructed by a
matrix product of the word relevances for each topic and a mixture of topics p(z|d) for
each document. Estimating the topic model means doing the reverse. The data matrix
on the left-hand side is decomposed into the two matrices on the right-hand side, thereby
recovering the characteristic words for each topic and the mixture of topics for each doc-
ument.

d
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Figure 7.2: Intuition of topic model decomposition. By introducing an unobserved, latent
topic variable z, the observed data matrix of p(w|d) is decomposed into a topic-word
matrix of p(w|z) and a document-topic matrix of p(z|d)
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The described formulation addresses precisely the task we formulated earlier. The
data matrix p(w|d) corresponds to the activity data depicted in the upper half of Fig. 7.1
and the decomposition illustrated in Fig. 7.2 corresponds to the activity patterns p(w|z)
and activations of activity patterns p(z|d) in the lower half. Therefore we propose to
discover activity patterns as topic-word distribution and daily routines by topic activation.

In the following experiments we use a particular instantiation of these kind of models
- called Latent Dirichlet Allocation (LDA) [Blei et al. 2003], that extends the described
pLSA model to a Bayesian approach by placing a dirichlet prior p(6,|ct) with parameter
o on the document-topic distributions p(z|6,). Fitting the model is equivalent to finding
parameters « for the dirichlet distribution and parameters 8 for the topic-word distribu-
tions p(w|z, B) that maximize the likelihood L of the data for documents d = 1,...,M:

M Ny T
c(eB) =] [ p(slo) | TT X piwilzB)p(cln) | dé

d=1 n=1z=1

S/

~
marginalize over z

J/

marginalize over topic activations 6,

where 7T is the number of topics and each document d consists of the words w¢ with
n=1,...,Ny. For amore detailed description of the learning process the reader is referred
to the original paper by Blei et al. [Blei er al. 2003]. We also use their implementation,
available at [Blei 2006].

7.3 Dataset

To show the effectiveness of the approach, we recorded the daily life of one person over a
period of sixteen days. The subject was provided with two wearable sensors, one of which
he placed in his right hip pocket, the other on the dominant (right) wrist. The recordings
were started in the morning shortly after getting up, and usually ended in the late evening
before going to bed. This enabled us to record continuous, non-scripted activities in a
natural environment. Due to memory constraints of the sensor platform, the memory had
to be emptied after about 4 hrs of recording. A recording of one day typically consists of
three such parts, i.e. roughly 12 hrs of data with two gaps in between. In total, our dataset
consists of 164 hrs of recordings. Of these, we had to discard 28 hrs due to failures in the
sensor hardware. Figure 7.3 gives an overview of the recordings.

Sensor Hardware. Fig. 7.4(a) shows the Porcupine sensor platform [Van Laerhoven
et al. 2006] which we used to record our set of activities. Besides a 3D accelerometer
(ADXL330) and a PIC microcontroller which we used for preprocessing of features, it
includes a realtime clock, nine binary tilt switches, a temperature sensor and two light
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Figure 7.3: Overview of the recorded dataset. Two factors made the recording process
difficult, namely the relatively small size of the onboard memory of the sensors, and
occasional sensor failures. A single recording consists of about four hours of data, after
which the contents of the memory had to be emptied. This resulted in occasional gaps in
the coverage that can be seen in the figure.
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Figure 7.4: The wearable sensor platform used for recording activities.

sensors. Data can be stored on 512 kb of flash storage and transferred via a USB con-
nector. In addition, the device features three buttons and three LEDs which can be freely
programmed, e.g. for annotation or status display. The platform is small and light enough
to be comfortably worn on a wristband (Fig. 7.4(b)) or slid into the subject’s pocket.

Features. The sensors deliver data at a rate of roughly 100Hz. Due to the memory con-
straints we subsampled the data by calculating mean and variance over a sliding window
of 0.4 seconds (i.e. @ 2.5Hz), and store them along with a timestamp from the realtime
clock. This allows to store about four hours of sensor data on the onboard memory of the
Sensor.
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Annotation. To analyze the effectiveness of our approach, we aimed for two different
levels of annotations. First, we asked the user to annotate daily routines such as commut-
ing or working. And second, we also aimed to obtain detailed annotations of the individual
activities — at least for part of the data. In total we annotated seven complete days (84 hrs)
in detail, which we used for our experiments. In the experiments reported below we will
analyze the recognition of daily routines both with and without these detailed annotations
of individual activities. This allows us to show that the approach is not only applicable in
supervised settings but also in entirely unsupervised settings.

Finding a good balance between detailed and complete annotations and minimal user
disruption is a common problem of studies in activity recognition, especially for long-
term studies outside a laboratory. We used a combination of several online and offline
annotation methods so that the user had some freedom to choose a method that suited him
depending on the situation. Online annotation takes place while the activities are being
recorded. We employed three different methods of online annotation, namely experience
sampling, a time diary and camera snapshots. During experience sampling, the subject
was notified in periodic intervals by an application running on his mobile phone, which
presented a set of questions about his current activities. The time diary is a handwritten
log in which the subject entered the names, start- and ending times of activities. As a
third method, the subject took occasional snapshots with the built-in camera of the mobile
phone.

It turned out that for our setting the time diary was the most useful online annotation
method, providing detailed information while being far less disrupting than expected. One
likely reason for this is that the subject was often working near or at a laptop, which he
could use to quickly log activities. Our experience sampling application, while relatively
fast and easy to use, tended to miss short events, pose redundant queries and was less
precise than the time diary in determining start and ending times of activities. For offline
annotation, we visualized the sensor data and aligned it with the annotations from the
experience sampling application and the time diary, as well as with the photographs taken
by the subject, and had the subject fill in remaining gaps, refine start- and ending times of
activities, and also identify and annotate daily routines.

Recorded Activities. Our subject annotated a total of 75 distinct activities and daily
routines. For our evaluation, we filtered out activities that occurred only once or for
very short durations, and merged similar ones into single classes. Within the individual
activities and within the daily routines there is no overlap between annotations, and for
both sets we introduced an additional unlabeled class, so that in the end each feature is
assigned to one activity and one daily routine.

The activity set consists of the following 34 activities, along with the unlabeled class
(duration in minutes shown in brackets): sitting / desk activities (3016.9), lying while
reading / using computer (196.6), having dinner (125.3), walking freely (123.6), driving
car (120.3), having lunch (75.2), discussing at whiteboard (62.6), attending a presen-
tation (48.8), driving bike (46.2), watching a movie (42.5), standing / talking on phone
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Figure 7.5: We used several online- and offline annotation methods during data collec-
tion. The table summarizes our positive and negative experiences with each of the meth-
ods. We found that a combination of several methods leaves the user the choice to decide
on the most appropriate method, depending on the situation, and can also lead to a more
complete and detailed coverage. In general, the most appropriate method will depend on
the type of scenario.

(24.8), walking while carrying something (22.8), walking (22.8), picking up cafeteria food
(22.6), sitting / having a coffee (21.8), queuing in line (19.8), personal hygiene (17.2), us-
ing the toilet (16.7), fanning barbecue (15.2), washing dishes (12.8), kneeling / doing
sth. else (11.6), sitting / talking on phone (8.7), kneeling / making fire for barbecue (8.2),
setting the table (8.0), standing / having a coffee (6.7), preparing food (4.6), having break-
fast (4.6), brushing teeth (4.3), standing / using the toilet (3.0), standing / talking (2.8),
washing hands (2.1), making coffee (1.8), running (1.0), and wiping the whiteboard (0.8)

Four daily routines (plus the unlabeled class) have been annotated that span longer
periods of time, typically dozens of minutes to several hours, and which are composed
of several distinct activities. The first routine is commuting (289 min), which includes
leaving the house and driving to work either by car or by bike, until arriving at the office,
and vice versa in the evening. The longest routine is office work (2814.7 min), which
mainly comprises desk activities, with occasional interruptions, e.g. when fetching a
coffee, visiting an office mate, going to the toilet, attending a meeting, etc. At noon
the subject usually went to a nearby cafeteria to have lunch, followed by a stop at a
neighboring coffee place. This episode, which usually lasted about an hour per day, is
labeled as lunch routine (391.3 min). The last routine is dinner activities (217.5 min),
which mostly includes setting the table, having dinner and washing the dishes. As all
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of the recorded days are weekdays, these four daily routines cover a large percentage of
the data, leaving out only some parts in the mornings and evenings. Figure 7.6 shows an
example of one day of sensor data, along with some snapshots taken by the user’s mobile
phone.

m I Officel ‘ Commutingl g Evening Activities
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Morning Lunch + Coffee
Routine ~7

Figure 7.6: One day of sensor data as used for our experiments. The plots show the mean
of the acceleration in x-, y- and z-direction at the wrist (lower row) and pocket (upper
row).

7.4 Discovery of Daily Routines based on Activity Recog-
nition

As discussed earlier, the proposed approach using topic models can be used to model daily
routines based on wearable sensors. While the example in section 7.2 has relied on user
generated annotations to discover activity patterns this section uses supervised activity
learning to generate and recognize a vocabulary of activities. Based on the recognized
activities topic models are then used to first learn and discover activity pattern which are
then in turn used to describe and recognize daily routines. Therefore we first describe how
we train a supervised classifier on labeled data, and then use the labels obtained from the
classifier as vocabulary for topic estimation. The next section will then describe how the
vocabulary can be obtained in an unsupervised way thereby making the approach scalable
to large amounts of training data.

Activity Recognition. We evaluated several combinations of features and classifiers on
our set of activities. From the acceleration signal we computed several features, including
mean, variance, and a number of frequency features, over sliding windows between 0.4
and 4 seconds. As additional feature we used the time of day provided by the realtime
clock of the sensor. As classifiers we evaluated SVMs, HMMs and Naive Bayes. They
are standard representatives of discriminative and generative classifiers and have been
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successfully used before for similar tasks (e.g. [Oliver er al. 2002, Huynh et al. 2007]).
All our results are cross-validated in a leave-one-day-out fashion.

We first compared the three classifiers and different features on a subset of the data
spanning two days. It turned out that due to the size of the dataset, SVM and HMM
training and classification took significantly longer than Naive Bayes. Due to its time
efficiency and since the overall recognition accuracy of Naive Bayes was only marginally
lower, we settled for this approach, using as features mean and variance of the 3D-
acceleration signal from wrist and pocket motion, plus the time-of-day information from
the realtime clock (adding up to a 13-dimensional feature vector). The use of frequency
features did not improve the results in our setting, which may be due to the relatively
coarse resolution (2.5Hz) of the data.

Overall we achieved an accuracy of 72.7% on the activity dataset. The individual
results vary considerably, owing to the diversity of the collected activities. The best five
results were obtained for sitting/ desk activities (precision 89.5%/ recall 95.4%), walking
Jreely (96.2/ 84.2), standing/ talking on phone (82.8/ 96.4), driving bike (96.7/ 77.1),
having lunch (76.5/ 97.5) and personal hygiene (89.0/ 66.2). A number of activities only
occurred on one day, so that the classifiers had no chance of classifying them correctly
in our leave-one-day-out crossvalidation protocol. Among these were kneeling, running,
standing while having a coffee, wiping the whiteboard, and attending a presentation. Most
of the activities with low recognition scores were either very short (e.g. washing hands
(precision 3.7%!/ recall 3.4%)), so that only little training data was available, or they were
confused with other, similar activities (eg. sitting/ having a coffee (22.4/ 35.6) was often
confused with desk activities),

The time-of-day feature enables the classifier to separate activities which share a com-
mon motion signature but are performed at different parts of the day — the main improve-
ment in recognition could be observed for the two activities having lunch and having din-
ner, for which confusion was virtually eliminated and precision/recall scores improved
from 16.8%/ 20.5% to 38.9%/ 47.9% (having dinner) and from 62%/ 19% to 97.5%/
76.5% (having lunch). As we used unimodal gaussians to model the Naive Bayes like-
lihoods, the time-of-day feature did not worsen the results for activities which occur at
irregular times during the day — if enough data for such activities exists, then the larger
variance usually flattens the likelihood function to a point at which it has little influence
on the final posterior. Problems with the time-of-day feature may arise for activities which
are not time-dependent but occur only few times in the training data.

7.4.1 Topic Estimation based on Activity Recognition

As a result of our supervised training procedure, we obtain for each data sample a poste-
rior probability for each activity, along with a discrete label that corresponds to the activity
with the highest posterior. Our next goal is to discover daily routines from this stream of
low-level data, using the framework provided by Latent Dirichlet Allocation.
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The main choices one has to make when applying LDA to activity data are the nature
and size of the vocabulary, the size of the documents and the number of topics. A simple
yet effective way to create documents for the topic models from a stream of activity labels
is to use a sliding window of length D over the labels and construct for each window a
histogram of label occurrences. In this way each document represents a mixture of activ-
ities over a window of time. We found that the outcome of the topic estimation process
can be made more robust to noise and misclassifications of the underlying classifier by
generating the vocabulary not from the hard assignments of the classifier, but from the
soft assignments given by the posterior probabilities for each activity. We achieve this
by summing up the posterior probabilities for each activity over the size of one docu-
ment window, and then generating labels for each activity in proportion to the sum of all
posteriors.

Qualitative Results. Figures 7.7(b) and 7.7(a) (bottom) show the result of LDA estima-
tion and inference when generating documents over windows of 30 minutes, shifted by
2.5 min at a time. In this example we chose T = 10 topics and set the dirichlet prior & to
0.01. The topics in Fig. 7.7(b) were estimated from six days of data. For each topic z we
list all activity labels w with p(w|z) > 0.01. Fig. 7.7(a) (bottom) shows the activations
of those topics on the day that was left out during training. In each time step we plot the
topic activations that correspond to the document covering the preceding 30 minutes.

The first important observation which can be made from the results shown in Fig. 7.7
is that there are topics that clearly correlate with the daily routines of the subject’s day.
This can be seen by comparing the topic activations to the daily routines annotated by
the subject (Fig. 7.7(a)). To see how well the estimated topic activations correspond to
the mixture of ground truth labels in the respective time window, we also collected the
ground truth labels in sliding windows the same size as the documents, i.e. we assigned
to each time step the percentage that an activity was ’active’ during the last 30 min.

Topics 1 and 2 are both active during office work so that their joint or individual
activation is a good indication of office work. In the afternoon topic 6 is activated strongly
for a certain period of time, corresponding - on that particular day - to a presentation of a
colleague. Topic 6 is a good example of a newly ’discovered’ routine — it does not appear
in the annotations of the user’s daily routines, yet it represents a valid activity pattern that
can be modeled and identified. The lunch routine is represented by two topics, namely
3 and 4. As the typical lunch routine is composed of a visit to the cafeteria and the visit
of a cafe, topics 3 and 4 have captured the differences in these two “phases” of the lunch
routine. Again the activation of either of these topics allows the recognition of the lunch
routine. The dinner routine is correlated with the activation of topic 7. The remaining
daily routine, commuting, is not directly correlated with a single topic but rather with a
combination of topics. Both in the evening and in the morning the co-activation of various
topics including topics 5, 6 and 3 allow to identify this routine.

Let’s now turn to the contents of the topics, i.e. the learned activity labels that have a
high probability of being part of a particular topic. As can be seen from Fig. 7.7(b), the
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Figure 7.7: (a) Ground truth and topic activations for one day, based on a vocabulary of
learned activity labels. (b) Contents of the ten estimated topics. The numbers in brackets
indicate p(w|z), i.e. the probability of the activity label w given the current topic z (Iabels
w with p(w|z) < 0.02 are not shown). The distributions were estimated from six days of
data. (a) shows the inferred topic activations for the day that was left out during training.

content often represents a meaningful set of activity labels. E.g., the prominent words in
topic 3 are having lunch, walking, picking up cafeteria food and queuing in line. Topic
5 is a mixture of driving car, walking, and desk activities and is activated during the
commuting routine of the subject. Topics 1 and 2 represent desk activities and are active
during the office work part of the subject’s day. Topic 7 contains having dinner and wash-
ing dishes, as well as desk activities and driving car, which all correspond to evening and
dinner activities of the subject.

Since the accuracy of the underlying classifier that generates the vocabulary is not per-
fect, there are errors due to misclassifications, some of which are reflected in the contents
of topics. E.g., the classifiers for the activities using the toilet and standing / using the
toilet fire relatively often, but only with precision of 18% and 7%, respectively. Partly due
to a small amount of training data, they are often confused with similar activities such as
desk activitites and standing at the whiteboard. As a consequence, in the example shown
in Fig. 7.7, their labels are weighted too strong in topics 4 and 6. A more powerful activity
recognition algorithm would help to alleviate such problems even though it is expected
that significant ambiguities between activities remain. An important and relevant property
of topic models is that they are robust to these types of ambiguities.



98 Chapter 7. Discovery of Daily Routines

Evaluation Method. While the plots of the topic activations suggest that the topics are
indeed able to discover and model activity patterns and therefore high-level structure in
the subject’s daily activities, it is not obvious how to quantify the results. We propose
two different measures for evaluating the quality of the topic decompositions: correlation
and recognition performance. For both measures we use as ground truth the daily rou-
tine annotations by the subject. First it should be noted, though, that both methods are
not optimal, since LDA is an inherently unsupervised method which is able to discover
meaningful structure a user was previously unaware of. Such ability cannot be quantified
when evaluating against a predetermined ground truth.

For the correlation measure, we first perform LDA estimation on six of the seven
recorded days. We then assign to each activity the topic to which the correlation to the
ground truth annotation is highest. Next we perform LDA inference on the seventh day
and note for each activity the correlation with its assigned topic. We repeat this in a leave-
one-day-out fashion and report the average results for each daily routine. In order to
compute recognition performance, we use the topic activation vectors as features for a su-
pervised learning task. More specifically, we first perform LDA estimation and inference
on six of the seven days, and then train a nearest neighbor classifier using the obtained
topic activation vectors and the daily routine ground truth. We then perform LDA infer-
ence on the seventh day and classify each of the resulting activation vectors using nearest
neighbor. The results we report are again cross-validated over the seven days of data.

Baseline Results. In order to obtain a baseline for the recognition of routines, we built
a supervised classifier using HMMs based on the same features that we use for the LDA-
approach, i.e. acceleration features from wrist and pocket sensor, plus time-of-day. We
used left-right models and varied the number of states Q, the number of gaussians per
state M, as well as the length of the observation sequence O. The cross-validated results
for the best parameter-combination that we found (Q =5, M = 2, O = 30min, shifted by
Smin) are shown in Fig. 7.8. The lunch and office work routines can be predicted with
high precision and recall. Lunch is a short, yet very regular routine, usually taking place
between noon and 1pm. Office work covers a large part of the day and consists to a large
part of sitting activities. In contrast, dinner and commuting are relatively short routines
that occur at relatively irregular times of day, which makes recognition more challenging.
This is reflected in the lower recall values. In the remainder of the paper we will use these
results as a baseline for the recognition of routines using topic models.

Quantitative Results. Fig. 7.9 shows the correlation and recognition results for the
best combination of parameters when we used learned activity labels as vocabulary. In
this case we used 7' = 10 topics, a document length of 30 min, and soft assignments from
class posteriors to generate the words for each document. Office work is best correlated
and recognized, followed by lunch, commuting and dinner. Comparing to our baseline
results (Fig. 7.8), we can see that the recognition of routines has improved. The values
for precision and recall increase throughout, with the exception of precision for dinner
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Routine Precision Recall

Dinner 88.6 27.3
Commuting 72.6 31.5
Lunch 84.4 80.7
Office Work 89.2 91.1
Mean 83.7 57.7

Figure 7.8: Baseline recognition results, using HMMSs based on acceleration and time-
of-day features.

routine. Overall, the results indicate that the estimated topics relate to high-level structure
in the subject’s daily routine.

Influence of Parameters. For the daily routines in our data set, correlation with topics
dropped noticeably when choosing document windows smaller than 30min. In general
our results indicate that choosing document lengths on the order of the average lengths
of the routines seems a good strategy. We also found that using more topics may lead
to better recognition results when using topics activation vectors as features, but makes
(visual) discovery of unknown routines more difficult, as the topic activation plots get
more noisy.

Routine Correlation Precision Recall

Dinner 0.7 75.5 40.2
Commuting 0.6 85.5 51.8
Lunch 0.8 87.0 83.3
Office Work 0.8 96.4 93.7
Mean 0.7 86.1 67.2

Figure 7.9: Correlation and recognition results when using topics estimated from learned
activity labels.

7.5 Unsupervised Learning of Daily Routines

In the previous section we showed how topics can be used as a means of inferring high-
level structure from a vocabulary of labels representing relatively short-term activities.
These labels were learned in a supervised fashion from a stream of sensor data. An
advantage of this approach is that the estimated topics carry an inherent meaning, which
is expressed by the distribution of labels within each topic. A substantial disadvantage,
though, is the amount of annotation effort associated with the supervised learning part. In
this section we describe how the vocabulary for the topic estimation can be constructed
in an unsupervised fashion. We will show that surprisingly good results can be obtained
without any need of tedious and detailed activity annotation.
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Clustering of Activity Data. To generate discrete labels from continuous sensor data
in an unsupervised fashion we simply use data clustering. This allows to assign to each
sample the index of the closest cluster centroid. While this is essentially the basis of our
approach, we again found that using soft instead of hard assignments did improve our
results. In order to create a vocabulary of size N, we first cluster our feature vectors using
K-means clustering with K = N. For each feature i we store the distances dj_y to the
centroids of each cluster. We then convert these distances to weights @y with
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Thus smaller distances imply higher weights, and the weights for one feature sum up
to one. The parameter o controls how fast the weights decline for more distant clusters.
Empirically we found that setting ¢ to the standard deviation of all distances worked well.
We next use the weights to construct documents of size D in the same fashion as for the
supervised case described in the previous section. More specifically, for each cluster i we
sum up the weights @; over a feature window of length D, and then generate m; labels for
this cluster by multiplying the sum of its weights by the document length D and rounding
to the next integer. Since the weights for each feature are a partition of 1, the document
will contain at most } m; = D labels.

Results. Fig. 7.10 shows an example of the result of LDA inference using a vocabu-
lary of 10 cluster labels, together with the daily routine ground truth for this day. The
documents were created from sliding windows of 30 min, shifted by 2.5 min at a time.
LDA estimation was performed on six of the seven days, and inference on the remaining
day. Again one can observe that the topic activations reflect the annotated daily routine
structure of the subject’s day, even though this time no annotations (neither for activities
nor for daily routines) were given at all. Furthermore, there are individual topics whose
activation is strongly correlated with the lunch, office work and commuting routines.

Fig. 7.11 shows correlation and recognition scores for the best combination of pa-
rameters when using a vocabulary of cluster labels for topic estimation. In this case we
used T = 10 topics, a document length of 30 min, and N = 60 clusters. Note that low
correlation does not necessarily imply bad recognition performance, as can be seen for
the commuting activity. This is because we compute correlation between individual top-
ics and daily routines, while recognition uses the activations of all topics at each time
step. Thus if a daily routine can be characterized by a mixture of topics instead of a single
topic, recognition scores may be high even though the best correlation of an individual
topic is low.

Comparing the results to the supervised method described in the last section (Fig.
7.9), one can observe that the mean correlation and precision are lower in the unsuper-
vised case, with about 10% less overall precision and a drop of 0.1 in correlation score.
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Figure 7.10: Top: Daily routine ground truth for one day of data. Bottom: Inferred topic
activations, based on a vocabulary of ten cluster labels. Ten topics were estimated from
six days of data, and the plot shows the activation of these topics on the day that was left
out during training.

However, overall recall declines only slightly, and the individual recognition scores for
office work and commuting remain high. One likely reason for the drop in precision for
the lunch and dinner routines is that they share many activities and are therefore not sep-
arated well by the clustering. As a consequence, recognition of lunch drops below our
baseline results. However, compared to the baseline, recall for dinner and commuting, as
well as precision for commuting are higher, indicating that the approach can compensate
for the irregular occurrences of these routines. Finally, keep in mind that these results
are based on predefined ground truth, and thus do not capture the ability of the method to
discover previously unknown structure in the data.

Routine Correlation Precision Recall

Dinner 0.6 56.9 40.2
Commuting 0.5 83.5 71.1
Lunch 0.8 73.8 70.2
Office Work 0.6 934 81.8
Mean 0.6 76.9 65.8

Figure 7.11: Correlation and recognition results when using topics estimated from k-
means cluster labels.

7.5.1 Discussion

In this section we used clustering as an unsupervised method to generate a vocabulary
of discrete labels from a stream of continuous activity data. We used this vocabulary
as basis for topic estimation and observed that the estimated topics correlate with daily
routine structure in the subject’s activities. The main advantage of this approach is that
it does not require any labeled training data and yet is able to discover structures that are
of relevance to the subject. As the approach is entirely data-driven, we don’t rely on any
noisy classifier output, and hence there are no ‘wrong’ words that the topic model has to
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deal with, as we observed in the supervised case. On the other hand, the contents of the
topics, i.e. the distribution over cluster labels, carries no direct meaning for an observer.
Such meaning can be established, however, via the additional step of comparing the topic
activations to the actual structure of the subject’s day, and then identifying topics that
correspond to possible daily routines.

Figure 7.12 gives a conceptual overview of the approach that we described in this
section and the alternative approach described in Section 7.4, and compares them in terms
of the amount of supervision required.

AN

supervision o S
e sit sit sit sit stand | = - |
no supervision -

walk walk walk
LDA -
/ walk stand walk J

walk sit eat eat

Il eat stand stand
One hour of Ik walk
Tam'’s Life Low-Level Classifiers ) walk walk ...
- e N
- - | — I
F“. . A : Clustering - cluster4 cluster8 =
|9 L N —d | cluster15 cluster16 —
,w: i T T cluster23 cluster4?2 LDA )
o WO cluster29 cluster16
. o cluster26 cluster21
cluster27 ...

Figure 7.12: Overview of our two approaches to discovery of activity patterns from sen-
sor data. Starting from a stretch of sensor data (left), we generate either a set of activity
labels (upper path; Section 7.4) or a set of cluster assignments (lower path; Section 7.5).
The sets correspond to the documents required by the subsequent topic estimation step.

7.6 Conclusion

In this chapter we have introduced a novel approach for modeling and discovering daily
routines from on-body sensor data. Inspired by machine learning methods from the text
processing community, we convert a stream of sensor data into a series of documents
consisting of sets of discrete activity labels. These sets are then mined for common topics,
1.e. activity patterns, using Latent Dirichlet Allocation. In an evaluation using seven days
of real-world activity data, we showed that the discovered activity patterns correspond
to high-level behavior of the user and are highly correlated with daily routines such as
commuting, office work or dinner routine.
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The patterns can be based on a learned vocabulary of meaningful activity labels (such
as walking, using the phone, discussing at whiteboard, etc.), in which case the discov-
ered patterns are immediately human-readable in that they represent sets of such labels.
Learning of labels requires a supervised component, which can be avoided by applying
our method directly to unlabeled sensor data using clustering. In this case, the method is
fully unsupervised, yet still allows to visualize high-level structure of the data, as well as
to identify activity transitions, novelties and anomalies.

We think that both the (partly) supervised and the unsupervised approach have ad-
vantages and limitations, which should be considered in the light of specific application
scenarios. Moreover, the approaches need not necessarily exclude each other. E.g., the
unsupervised approach can help to detect anomalies, but not necessarily tell what exactly
happened (e.g. getting up at night to go to the toilet, vs. getting up to sleepwalk). This
could be addressed by the use of semi-supervision, e.g. by presenting the user with a
visualization of topic activations such as in Fig. 7.10 (bottom), and asking him to label
the discovered topics.

In conclusion, we believe that our approach is highly appealing for the field of activity
recognition, and that so far we have only exploited some of its potential. E.g., as can be
seen from the topic activation plots, the probabilistic nature of the approach allows for
handling of concurrent and overlapping activities (expressed as co-activation of patterns),
and also transitions between activities. We consider these properties, together with the
ability to decompose routines into their low-level constituents, as a crucial advantage
over traditional unsupervised techniques such as clustering.






Conclusion and Outlook

Context-aware computing is a broad field of research. This thesis has investigated one
of its many facets, namely activity recognition with wearable sensors. In the following
we summarize our main findings and contributions, and then give an outlook on possible
future work.

Choosing appropriate features can improve recognition. In Chapter 3, we have pre-
sented a systematic comparison of commonly used features for activity recognition. Our
results indicate that the choice of features can be crucial for the success of a recognition
algorithm, and prior to our study there existed little work on evaluation of features with
respect to recognition of specific activities.

We have developed new unsupervised and semi-supervised learning methods for ac-
tivity recognition. Reducing the amount of supervision in activity recognition is im-
portant for developing scalable systems that can adapt to new users and scenarios with
minimal annotation overhead. Towards this goal, we have introduced a novel approach
for unsupervised learning of activities from low-level sensor data in Chapter 4. The pro-
posed approach is neither limited to specific activities nor specific types of sensors. We
described the algorithm, proposed an extension to multiple time scales, and evaluated the
approach on several data sets, showing that it can be used to reliably model and also recog-
nize activities. In Chapter 5 we have extended the approach to allow for semi-supervised
learning, by proposing to combine it with a discriminative classifier. The generative part
of the algorithm allows to extract and learn structure in activity data without any prior
labeling or supervision. The discriminant part then uses a small but labeled subset of the
training data to train a discriminant classifier. Experiments showed that this scheme en-
ables to attain high recognition rates even though only a subset of the training data is used
for training. In addition, we analyzed and discussed the tradeoff between labeling effort
and recognition performance.

Modeling and recognizing high-level activities can be achieved with low-level sen-
sors. This thesis has taken a first step towards modeling and recognizing high-level

105



106 Chapter 8. Conclusion and Outlook

activities from body-worn accelerometers. In order to find out in how far traditional meth-
ods for recognizing low-level and short-term activities can be scaled to the recognition of
high-level activities, we conducted a study using 10 hours of activity data and analyzed
the performance of different recognition algorithms (Chapter 6). For high-level activities
such as going shopping or doing housework, we found that we can achieve recognition
rates above 90%, using standard supervised learning techniques such as support vector
machines. Our experimental results suggest that it is feasible to recognize such high-level
activities using similar techniques as for the recognition of low-level activities.

Unsupervised methods are feasible and valuable for the analysis of high-level activ-
ities. While unsupervised methods are important for short-term activities, they become
crucial when dealing with long-term and high-level activities, as the cost of annotating
such activities is even higher. In Chapter 7, we have introduced an unsupervised approach
based on topic models that allows to discover and recognize daily routines such as work-
ing in the office or commuting from body-worn accelerometers. We have evaluated the
approach on a data set of more than 80 hours of activity data and shown that it is able
to capture to a large extent the structure of the user’s daily routines. Using the activity
activation patterns as features for a classifier, the approach can predict daily routines in
unknown data with high confidence.

8.1 Outlook

In this thesis we have concentrated on two particular challenges for activity recognition,
namely reducing the amount of supervision and modeling high-level activities. Towards
these goals we have made several contributions. In the next paragraphs, we outline pos-
sible future directions into which our work can be continued and extended. Of these we
consider the first, namely long-term studies under realistic conditions, particularly impor-
tant.

Long-term Studies. An important step towards real applications for activity recogni-
tion, for which we lacked the time and resources in the course of thesis, is to conduct
long-term studies under realistic conditions, for example in cooperation with elderly peo-
ple in their homes. Such studies would not only give more insight into the feasibility of
the different approaches to activity recognition that have been proposed up to now, but
also provide valuable information on issues such as user-acceptance, annotation methods,
and usability factors. In addition, they would yield useful data for the investigation of
long-term and high-level activities, and probably also uncover problems and challenges
that researchers aren’t even aware of yet. These kind of studies are challenging to set up,
and probably require an interdisciplinary approach, e.g. in cooperation with elderly care
institutions, smart home facilities or hospitals.
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Exploiting topic models further. We believe that the use of topic models as proposed in
Chapter 7 is very promising for discovery and modeling of activities, and has interesting
properties that we haven’t exploited yet. For instance, the probabilistic nature of the
approach allows for handling of concurrent and overlapping activities (expressed as co-
activation of patterns), and also transitions between activities (e.g. recognizing that the
user is “on his way to lunch”). Moreover, the vector of pattern activations for each time
step could serve as a high-level feature for more sophisticated classifiers.

Semi-supervised and Active Learning. In Chapter 5 we have investigated the use of
semi-supervised learning for activity recognition. Semi-supervised learning has received
increasing attention in the machine learning community recently, leading to significant
advances in the state of the art [Chapelle er al. 2006]. Such methods are appealing, since
they allow to learn from large amounts of unlabeled activity data that can be obtained
much easier than labeled data, and at the same time allow to combine this data with small
but valuable amounts of user feedback. This topic is already being actively explored fur-
ther, e.g. by [Ali ez al. 2008]. Another promising approach is active learning, in which the
learning algorithm actively asks for labels of informative samples. Since labeling is ex-
pensive for activity data, such methods are appealing for the field of activity recognition,
and they are already beginning to be explored [Stikic et al. 2008b].

Quality of Activities. In various domains, e.g. sports, elderly care, and healthcare,
professionals are extremely interested in not only knowing that an activity has been per-
formed, but also how well it has been performed. Recognizing the quality of an activity
in an automatic fashion is a challenging problem and an open research question, which
could enable a range of interesting applications. E.g., athletes could be provided with
personal trainers, patients could get feedback on rehabilitation exercises, and professional
care-givers could be eased of the burden to judge their patients performance of ADLs,
instead focusing on the care-giving part of their job.

Additional Sensors for Recognition of High-Level Activities. This thesis has mainly
investigated the use of acceleration sensors for activity recognition. This type of sensor
has many advantages, such as being versatile, well-understood, small, lightweight, and
proven to lead to good recognition results for many types of physical activities. However,
especially when moving towards high-level activities, other sources of information can
be helpful. As an example, we have already incorporated time of day as a feature in the
approach described in Chapter 7. We believe the approach presented in this chapter is
very versatile, and can easily accommodate for additional and complementary types of
information. For instance, location is another important piece of context information,
and would be very interesting to investigate in how far it can improve our results. Other
possible sources of information include calendar entries or log-files from mobile devices.
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